Fooocus/modules/core.py
2023-08-10 08:09:38 -07:00

90 lines
3.0 KiB
Python

import random
import torch
import numpy as np
import comfy.model_management
import comfy.sample
import comfy.utils
import latent_preview
from comfy.sd import load_checkpoint_guess_config
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode, common_ksampler
opCLIPTextEncode = CLIPTextEncode()
opEmptyLatentImage = EmptyLatentImage()
opVAEDecode = VAEDecode()
class StableDiffusionModel:
def __init__(self, unet, vae, clip, clip_vision):
self.unet = unet
self.vae = vae
self.clip = clip
self.clip_vision = clip_vision
@torch.no_grad()
def load_model(ckpt_filename):
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename)
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision)
@torch.no_grad()
def encode_prompt_condition(clip, prompt):
return opCLIPTextEncode.encode(clip=clip, text=prompt)[0]
@torch.no_grad()
def generate_empty_latent(width=1024, height=1024, batch_size=1):
return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]
@torch.no_grad()
def decode_vae(vae, latent_image):
return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
@torch.no_grad()
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='euler_ancestral', scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = latent_preview.get_previewer(device, model.model.latent_format)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
out = latent.copy()
out["samples"] = samples
return out
@torch.no_grad()
def image_to_numpy(x):
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]