Fooocus/modules/patch.py
2023-09-16 15:01:34 -07:00

153 lines
5.0 KiB
Python

import torch
import comfy.model_base
import comfy.ldm.modules.diffusionmodules.openaimodel
import comfy.samplers
import comfy.k_diffusion.external
import comfy.model_management
import modules.anisotropic as anisotropic
import comfy.ldm.modules.attention
import comfy.sd1_clip
from comfy.k_diffusion import utils
sharpness = 2.0
cfg_x0 = 0.0
cfg_s = 1.0
def cfg_patched(args):
global cfg_x0, cfg_s
positive_eps = args['cond'].clone()
positive_x0 = args['cond'] * cfg_s + cfg_x0
uncond = args['uncond'] * cfg_s + cfg_x0
cond_scale = args['cond_scale']
t = args['timestep']
alpha = 1.0 - (t / 999.0)[:, None, None, None].clone()
alpha *= 0.001 * sharpness
eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
eps_degraded_weighted = eps_degraded * alpha + positive_eps * (1.0 - alpha)
cond = eps_degraded_weighted * cfg_s + cfg_x0
return uncond + (cond - uncond) * cond_scale
def patched_discrete_eps_ddpm_denoiser_forward(self, input, sigma, **kwargs):
global cfg_x0, cfg_s
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
cfg_x0 = input
cfg_s = c_out
return self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
def sdxl_encode_adm_patched(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
if kwargs.get("prompt_type", "") == "negative":
width *= 0.8
height *= 0.8
elif kwargs.get("prompt_type", "") == "positive":
width *= 1.5
height *= 1.5
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
def sdxl_refiner_encode_adm_patched(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
if kwargs.get("prompt_type", "") == "negative":
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
else:
aesthetic_score = kwargs.get("aesthetic_score", 7.0)
if kwargs.get("prompt_type", "") == "negative":
width *= 0.8
height *= 0.8
elif kwargs.get("prompt_type", "") == "positive":
width *= 1.5
height *= 1.5
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([aesthetic_score])))
flat = torch.flatten(torch.cat(out))[None,]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
def text_encoder_device_patched():
# Fooocus's style system uses text encoder much more times than comfy so this makes things much faster.
return comfy.model_management.get_torch_device()
def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs):
to_encode = list(self.empty_tokens)
for x in token_weight_pairs:
tokens = list(map(lambda a: a[0], x))
to_encode.append(tokens)
out, pooled = self.encode(to_encode)
z_empty = out[0:1]
if pooled.shape[0] > 1:
first_pooled = pooled[1:2]
else:
first_pooled = pooled[0:1]
output = []
for k in range(1, out.shape[0]):
z = out[k:k + 1]
original_mean = z.mean()
for i in range(len(z)):
for j in range(len(z[i])):
weight = token_weight_pairs[k - 1][j][1]
z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
new_mean = z.mean()
z = z * (original_mean / new_mean)
output.append(z)
if len(output) == 0:
return z_empty.cpu(), first_pooled.cpu()
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
def patch_all():
comfy.ldm.modules.attention.print = lambda x: None
comfy.model_management.text_encoder_device = text_encoder_device_patched
print(f'Fooocus Text Processing Pipelines are retargeted to {str(comfy.model_management.text_encoder_device())}')
comfy.k_diffusion.external.DiscreteEpsDDPMDenoiser.forward = patched_discrete_eps_ddpm_denoiser_forward
comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
# comfy.model_base.SDXLRefiner.encode_adm = sdxl_refiner_encode_adm_patched
comfy.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method
return