650 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # pytorch_diffusion + derived encoder decoder
 | |
| import math
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import numpy as np
 | |
| from einops import rearrange
 | |
| from typing import Optional, Any
 | |
| 
 | |
| from fcbh import model_management
 | |
| import fcbh.ops
 | |
| 
 | |
| if model_management.xformers_enabled_vae():
 | |
|     import xformers
 | |
|     import xformers.ops
 | |
| 
 | |
| def get_timestep_embedding(timesteps, embedding_dim):
 | |
|     """
 | |
|     This matches the implementation in Denoising Diffusion Probabilistic Models:
 | |
|     From Fairseq.
 | |
|     Build sinusoidal embeddings.
 | |
|     This matches the implementation in tensor2tensor, but differs slightly
 | |
|     from the description in Section 3.5 of "Attention Is All You Need".
 | |
|     """
 | |
|     assert len(timesteps.shape) == 1
 | |
| 
 | |
|     half_dim = embedding_dim // 2
 | |
|     emb = math.log(10000) / (half_dim - 1)
 | |
|     emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
 | |
|     emb = emb.to(device=timesteps.device)
 | |
|     emb = timesteps.float()[:, None] * emb[None, :]
 | |
|     emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
 | |
|     if embedding_dim % 2 == 1:  # zero pad
 | |
|         emb = torch.nn.functional.pad(emb, (0,1,0,0))
 | |
|     return emb
 | |
| 
 | |
| 
 | |
| def nonlinearity(x):
 | |
|     # swish
 | |
|     return x*torch.sigmoid(x)
 | |
| 
 | |
| 
 | |
| def Normalize(in_channels, num_groups=32):
 | |
|     return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
 | |
| 
 | |
| 
 | |
| class Upsample(nn.Module):
 | |
|     def __init__(self, in_channels, with_conv):
 | |
|         super().__init__()
 | |
|         self.with_conv = with_conv
 | |
|         if self.with_conv:
 | |
|             self.conv = fcbh.ops.Conv2d(in_channels,
 | |
|                                         in_channels,
 | |
|                                         kernel_size=3,
 | |
|                                         stride=1,
 | |
|                                         padding=1)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         try:
 | |
|             x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
 | |
|         except: #operation not implemented for bf16
 | |
|             b, c, h, w = x.shape
 | |
|             out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
 | |
|             split = 8
 | |
|             l = out.shape[1] // split
 | |
|             for i in range(0, out.shape[1], l):
 | |
|                 out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
 | |
|             del x
 | |
|             x = out
 | |
| 
 | |
|         if self.with_conv:
 | |
|             x = self.conv(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class Downsample(nn.Module):
 | |
|     def __init__(self, in_channels, with_conv):
 | |
|         super().__init__()
 | |
|         self.with_conv = with_conv
 | |
|         if self.with_conv:
 | |
|             # no asymmetric padding in torch conv, must do it ourselves
 | |
|             self.conv = fcbh.ops.Conv2d(in_channels,
 | |
|                                         in_channels,
 | |
|                                         kernel_size=3,
 | |
|                                         stride=2,
 | |
|                                         padding=0)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         if self.with_conv:
 | |
|             pad = (0,1,0,1)
 | |
|             x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
 | |
|             x = self.conv(x)
 | |
|         else:
 | |
|             x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class ResnetBlock(nn.Module):
 | |
|     def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
 | |
|                  dropout, temb_channels=512):
 | |
|         super().__init__()
 | |
|         self.in_channels = in_channels
 | |
|         out_channels = in_channels if out_channels is None else out_channels
 | |
|         self.out_channels = out_channels
 | |
|         self.use_conv_shortcut = conv_shortcut
 | |
| 
 | |
|         self.swish = torch.nn.SiLU(inplace=True)
 | |
|         self.norm1 = Normalize(in_channels)
 | |
|         self.conv1 = fcbh.ops.Conv2d(in_channels,
 | |
|                                      out_channels,
 | |
|                                      kernel_size=3,
 | |
|                                      stride=1,
 | |
|                                      padding=1)
 | |
|         if temb_channels > 0:
 | |
|             self.temb_proj = fcbh.ops.Linear(temb_channels,
 | |
|                                              out_channels)
 | |
|         self.norm2 = Normalize(out_channels)
 | |
|         self.dropout = torch.nn.Dropout(dropout, inplace=True)
 | |
|         self.conv2 = fcbh.ops.Conv2d(out_channels,
 | |
|                                      out_channels,
 | |
|                                      kernel_size=3,
 | |
|                                      stride=1,
 | |
|                                      padding=1)
 | |
|         if self.in_channels != self.out_channels:
 | |
|             if self.use_conv_shortcut:
 | |
|                 self.conv_shortcut = fcbh.ops.Conv2d(in_channels,
 | |
|                                                      out_channels,
 | |
|                                                      kernel_size=3,
 | |
|                                                      stride=1,
 | |
|                                                      padding=1)
 | |
|             else:
 | |
|                 self.nin_shortcut = fcbh.ops.Conv2d(in_channels,
 | |
|                                                     out_channels,
 | |
|                                                     kernel_size=1,
 | |
|                                                     stride=1,
 | |
|                                                     padding=0)
 | |
| 
 | |
|     def forward(self, x, temb):
 | |
|         h = x
 | |
|         h = self.norm1(h)
 | |
|         h = self.swish(h)
 | |
|         h = self.conv1(h)
 | |
| 
 | |
|         if temb is not None:
 | |
|             h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
 | |
| 
 | |
|         h = self.norm2(h)
 | |
|         h = self.swish(h)
 | |
|         h = self.dropout(h)
 | |
|         h = self.conv2(h)
 | |
| 
 | |
|         if self.in_channels != self.out_channels:
 | |
|             if self.use_conv_shortcut:
 | |
|                 x = self.conv_shortcut(x)
 | |
|             else:
 | |
|                 x = self.nin_shortcut(x)
 | |
| 
 | |
|         return x+h
 | |
| 
 | |
| def slice_attention(q, k, v):
 | |
|     r1 = torch.zeros_like(k, device=q.device)
 | |
|     scale = (int(q.shape[-1])**(-0.5))
 | |
| 
 | |
|     mem_free_total = model_management.get_free_memory(q.device)
 | |
| 
 | |
|     gb = 1024 ** 3
 | |
|     tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
 | |
|     modifier = 3 if q.element_size() == 2 else 2.5
 | |
|     mem_required = tensor_size * modifier
 | |
|     steps = 1
 | |
| 
 | |
|     if mem_required > mem_free_total:
 | |
|         steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
 | |
| 
 | |
|     while True:
 | |
|         try:
 | |
|             slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
 | |
|             for i in range(0, q.shape[1], slice_size):
 | |
|                 end = i + slice_size
 | |
|                 s1 = torch.bmm(q[:, i:end], k) * scale
 | |
| 
 | |
|                 s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
 | |
|                 del s1
 | |
| 
 | |
|                 r1[:, :, i:end] = torch.bmm(v, s2)
 | |
|                 del s2
 | |
|             break
 | |
|         except model_management.OOM_EXCEPTION as e:
 | |
|             model_management.soft_empty_cache(True)
 | |
|             steps *= 2
 | |
|             if steps > 128:
 | |
|                 raise e
 | |
|             print("out of memory error, increasing steps and trying again", steps)
 | |
| 
 | |
|     return r1
 | |
| 
 | |
| def normal_attention(q, k, v):
 | |
|     # compute attention
 | |
|     b,c,h,w = q.shape
 | |
| 
 | |
|     q = q.reshape(b,c,h*w)
 | |
|     q = q.permute(0,2,1)   # b,hw,c
 | |
|     k = k.reshape(b,c,h*w) # b,c,hw
 | |
|     v = v.reshape(b,c,h*w)
 | |
| 
 | |
|     r1 = slice_attention(q, k, v)
 | |
|     h_ = r1.reshape(b,c,h,w)
 | |
|     del r1
 | |
|     return h_
 | |
| 
 | |
| def xformers_attention(q, k, v):
 | |
|     # compute attention
 | |
|     B, C, H, W = q.shape
 | |
|     q, k, v = map(
 | |
|         lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
 | |
|         (q, k, v),
 | |
|     )
 | |
| 
 | |
|     try:
 | |
|         out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
 | |
|         out = out.transpose(1, 2).reshape(B, C, H, W)
 | |
|     except NotImplementedError as e:
 | |
|         out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
 | |
|     return out
 | |
| 
 | |
| def pytorch_attention(q, k, v):
 | |
|     # compute attention
 | |
|     B, C, H, W = q.shape
 | |
|     q, k, v = map(
 | |
|         lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
 | |
|         (q, k, v),
 | |
|     )
 | |
| 
 | |
|     try:
 | |
|         out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
 | |
|         out = out.transpose(2, 3).reshape(B, C, H, W)
 | |
|     except model_management.OOM_EXCEPTION as e:
 | |
|         print("scaled_dot_product_attention OOMed: switched to slice attention")
 | |
|         out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class AttnBlock(nn.Module):
 | |
|     def __init__(self, in_channels):
 | |
|         super().__init__()
 | |
|         self.in_channels = in_channels
 | |
| 
 | |
|         self.norm = Normalize(in_channels)
 | |
|         self.q = fcbh.ops.Conv2d(in_channels,
 | |
|                                  in_channels,
 | |
|                                  kernel_size=1,
 | |
|                                  stride=1,
 | |
|                                  padding=0)
 | |
|         self.k = fcbh.ops.Conv2d(in_channels,
 | |
|                                  in_channels,
 | |
|                                  kernel_size=1,
 | |
|                                  stride=1,
 | |
|                                  padding=0)
 | |
|         self.v = fcbh.ops.Conv2d(in_channels,
 | |
|                                  in_channels,
 | |
|                                  kernel_size=1,
 | |
|                                  stride=1,
 | |
|                                  padding=0)
 | |
|         self.proj_out = fcbh.ops.Conv2d(in_channels,
 | |
|                                         in_channels,
 | |
|                                         kernel_size=1,
 | |
|                                         stride=1,
 | |
|                                         padding=0)
 | |
| 
 | |
|         if model_management.xformers_enabled_vae():
 | |
|             print("Using xformers attention in VAE")
 | |
|             self.optimized_attention = xformers_attention
 | |
|         elif model_management.pytorch_attention_enabled():
 | |
|             print("Using pytorch attention in VAE")
 | |
|             self.optimized_attention = pytorch_attention
 | |
|         else:
 | |
|             print("Using split attention in VAE")
 | |
|             self.optimized_attention = normal_attention
 | |
| 
 | |
|     def forward(self, x):
 | |
|         h_ = x
 | |
|         h_ = self.norm(h_)
 | |
|         q = self.q(h_)
 | |
|         k = self.k(h_)
 | |
|         v = self.v(h_)
 | |
| 
 | |
|         h_ = self.optimized_attention(q, k, v)
 | |
| 
 | |
|         h_ = self.proj_out(h_)
 | |
| 
 | |
|         return x+h_
 | |
| 
 | |
| 
 | |
| def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
 | |
|     return AttnBlock(in_channels)
 | |
| 
 | |
| 
 | |
| class Model(nn.Module):
 | |
|     def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
 | |
|                  attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
 | |
|                  resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
 | |
|         super().__init__()
 | |
|         if use_linear_attn: attn_type = "linear"
 | |
|         self.ch = ch
 | |
|         self.temb_ch = self.ch*4
 | |
|         self.num_resolutions = len(ch_mult)
 | |
|         self.num_res_blocks = num_res_blocks
 | |
|         self.resolution = resolution
 | |
|         self.in_channels = in_channels
 | |
| 
 | |
|         self.use_timestep = use_timestep
 | |
|         if self.use_timestep:
 | |
|             # timestep embedding
 | |
|             self.temb = nn.Module()
 | |
|             self.temb.dense = nn.ModuleList([
 | |
|                 fcbh.ops.Linear(self.ch,
 | |
|                                 self.temb_ch),
 | |
|                 fcbh.ops.Linear(self.temb_ch,
 | |
|                                 self.temb_ch),
 | |
|             ])
 | |
| 
 | |
|         # downsampling
 | |
|         self.conv_in = fcbh.ops.Conv2d(in_channels,
 | |
|                                        self.ch,
 | |
|                                        kernel_size=3,
 | |
|                                        stride=1,
 | |
|                                        padding=1)
 | |
| 
 | |
|         curr_res = resolution
 | |
|         in_ch_mult = (1,)+tuple(ch_mult)
 | |
|         self.down = nn.ModuleList()
 | |
|         for i_level in range(self.num_resolutions):
 | |
|             block = nn.ModuleList()
 | |
|             attn = nn.ModuleList()
 | |
|             block_in = ch*in_ch_mult[i_level]
 | |
|             block_out = ch*ch_mult[i_level]
 | |
|             for i_block in range(self.num_res_blocks):
 | |
|                 block.append(ResnetBlock(in_channels=block_in,
 | |
|                                          out_channels=block_out,
 | |
|                                          temb_channels=self.temb_ch,
 | |
|                                          dropout=dropout))
 | |
|                 block_in = block_out
 | |
|                 if curr_res in attn_resolutions:
 | |
|                     attn.append(make_attn(block_in, attn_type=attn_type))
 | |
|             down = nn.Module()
 | |
|             down.block = block
 | |
|             down.attn = attn
 | |
|             if i_level != self.num_resolutions-1:
 | |
|                 down.downsample = Downsample(block_in, resamp_with_conv)
 | |
|                 curr_res = curr_res // 2
 | |
|             self.down.append(down)
 | |
| 
 | |
|         # middle
 | |
|         self.mid = nn.Module()
 | |
|         self.mid.block_1 = ResnetBlock(in_channels=block_in,
 | |
|                                        out_channels=block_in,
 | |
|                                        temb_channels=self.temb_ch,
 | |
|                                        dropout=dropout)
 | |
|         self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
 | |
|         self.mid.block_2 = ResnetBlock(in_channels=block_in,
 | |
|                                        out_channels=block_in,
 | |
|                                        temb_channels=self.temb_ch,
 | |
|                                        dropout=dropout)
 | |
| 
 | |
|         # upsampling
 | |
|         self.up = nn.ModuleList()
 | |
|         for i_level in reversed(range(self.num_resolutions)):
 | |
|             block = nn.ModuleList()
 | |
|             attn = nn.ModuleList()
 | |
|             block_out = ch*ch_mult[i_level]
 | |
|             skip_in = ch*ch_mult[i_level]
 | |
|             for i_block in range(self.num_res_blocks+1):
 | |
|                 if i_block == self.num_res_blocks:
 | |
|                     skip_in = ch*in_ch_mult[i_level]
 | |
|                 block.append(ResnetBlock(in_channels=block_in+skip_in,
 | |
|                                          out_channels=block_out,
 | |
|                                          temb_channels=self.temb_ch,
 | |
|                                          dropout=dropout))
 | |
|                 block_in = block_out
 | |
|                 if curr_res in attn_resolutions:
 | |
|                     attn.append(make_attn(block_in, attn_type=attn_type))
 | |
|             up = nn.Module()
 | |
|             up.block = block
 | |
|             up.attn = attn
 | |
|             if i_level != 0:
 | |
|                 up.upsample = Upsample(block_in, resamp_with_conv)
 | |
|                 curr_res = curr_res * 2
 | |
|             self.up.insert(0, up) # prepend to get consistent order
 | |
| 
 | |
|         # end
 | |
|         self.norm_out = Normalize(block_in)
 | |
|         self.conv_out = fcbh.ops.Conv2d(block_in,
 | |
|                                         out_ch,
 | |
|                                         kernel_size=3,
 | |
|                                         stride=1,
 | |
|                                         padding=1)
 | |
| 
 | |
|     def forward(self, x, t=None, context=None):
 | |
|         #assert x.shape[2] == x.shape[3] == self.resolution
 | |
|         if context is not None:
 | |
|             # assume aligned context, cat along channel axis
 | |
|             x = torch.cat((x, context), dim=1)
 | |
|         if self.use_timestep:
 | |
|             # timestep embedding
 | |
|             assert t is not None
 | |
|             temb = get_timestep_embedding(t, self.ch)
 | |
|             temb = self.temb.dense[0](temb)
 | |
|             temb = nonlinearity(temb)
 | |
|             temb = self.temb.dense[1](temb)
 | |
|         else:
 | |
|             temb = None
 | |
| 
 | |
|         # downsampling
 | |
|         hs = [self.conv_in(x)]
 | |
|         for i_level in range(self.num_resolutions):
 | |
|             for i_block in range(self.num_res_blocks):
 | |
|                 h = self.down[i_level].block[i_block](hs[-1], temb)
 | |
|                 if len(self.down[i_level].attn) > 0:
 | |
|                     h = self.down[i_level].attn[i_block](h)
 | |
|                 hs.append(h)
 | |
|             if i_level != self.num_resolutions-1:
 | |
|                 hs.append(self.down[i_level].downsample(hs[-1]))
 | |
| 
 | |
|         # middle
 | |
|         h = hs[-1]
 | |
|         h = self.mid.block_1(h, temb)
 | |
|         h = self.mid.attn_1(h)
 | |
|         h = self.mid.block_2(h, temb)
 | |
| 
 | |
|         # upsampling
 | |
|         for i_level in reversed(range(self.num_resolutions)):
 | |
|             for i_block in range(self.num_res_blocks+1):
 | |
|                 h = self.up[i_level].block[i_block](
 | |
|                     torch.cat([h, hs.pop()], dim=1), temb)
 | |
|                 if len(self.up[i_level].attn) > 0:
 | |
|                     h = self.up[i_level].attn[i_block](h)
 | |
|             if i_level != 0:
 | |
|                 h = self.up[i_level].upsample(h)
 | |
| 
 | |
|         # end
 | |
|         h = self.norm_out(h)
 | |
|         h = nonlinearity(h)
 | |
|         h = self.conv_out(h)
 | |
|         return h
 | |
| 
 | |
|     def get_last_layer(self):
 | |
|         return self.conv_out.weight
 | |
| 
 | |
| 
 | |
| class Encoder(nn.Module):
 | |
|     def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
 | |
|                  attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
 | |
|                  resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
 | |
|                  **ignore_kwargs):
 | |
|         super().__init__()
 | |
|         if use_linear_attn: attn_type = "linear"
 | |
|         self.ch = ch
 | |
|         self.temb_ch = 0
 | |
|         self.num_resolutions = len(ch_mult)
 | |
|         self.num_res_blocks = num_res_blocks
 | |
|         self.resolution = resolution
 | |
|         self.in_channels = in_channels
 | |
| 
 | |
|         # downsampling
 | |
|         self.conv_in = fcbh.ops.Conv2d(in_channels,
 | |
|                                        self.ch,
 | |
|                                        kernel_size=3,
 | |
|                                        stride=1,
 | |
|                                        padding=1)
 | |
| 
 | |
|         curr_res = resolution
 | |
|         in_ch_mult = (1,)+tuple(ch_mult)
 | |
|         self.in_ch_mult = in_ch_mult
 | |
|         self.down = nn.ModuleList()
 | |
|         for i_level in range(self.num_resolutions):
 | |
|             block = nn.ModuleList()
 | |
|             attn = nn.ModuleList()
 | |
|             block_in = ch*in_ch_mult[i_level]
 | |
|             block_out = ch*ch_mult[i_level]
 | |
|             for i_block in range(self.num_res_blocks):
 | |
|                 block.append(ResnetBlock(in_channels=block_in,
 | |
|                                          out_channels=block_out,
 | |
|                                          temb_channels=self.temb_ch,
 | |
|                                          dropout=dropout))
 | |
|                 block_in = block_out
 | |
|                 if curr_res in attn_resolutions:
 | |
|                     attn.append(make_attn(block_in, attn_type=attn_type))
 | |
|             down = nn.Module()
 | |
|             down.block = block
 | |
|             down.attn = attn
 | |
|             if i_level != self.num_resolutions-1:
 | |
|                 down.downsample = Downsample(block_in, resamp_with_conv)
 | |
|                 curr_res = curr_res // 2
 | |
|             self.down.append(down)
 | |
| 
 | |
|         # middle
 | |
|         self.mid = nn.Module()
 | |
|         self.mid.block_1 = ResnetBlock(in_channels=block_in,
 | |
|                                        out_channels=block_in,
 | |
|                                        temb_channels=self.temb_ch,
 | |
|                                        dropout=dropout)
 | |
|         self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
 | |
|         self.mid.block_2 = ResnetBlock(in_channels=block_in,
 | |
|                                        out_channels=block_in,
 | |
|                                        temb_channels=self.temb_ch,
 | |
|                                        dropout=dropout)
 | |
| 
 | |
|         # end
 | |
|         self.norm_out = Normalize(block_in)
 | |
|         self.conv_out = fcbh.ops.Conv2d(block_in,
 | |
|                                         2*z_channels if double_z else z_channels,
 | |
|                                         kernel_size=3,
 | |
|                                         stride=1,
 | |
|                                         padding=1)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         # timestep embedding
 | |
|         temb = None
 | |
|         # downsampling
 | |
|         h = self.conv_in(x)
 | |
|         for i_level in range(self.num_resolutions):
 | |
|             for i_block in range(self.num_res_blocks):
 | |
|                 h = self.down[i_level].block[i_block](h, temb)
 | |
|                 if len(self.down[i_level].attn) > 0:
 | |
|                     h = self.down[i_level].attn[i_block](h)
 | |
|             if i_level != self.num_resolutions-1:
 | |
|                 h = self.down[i_level].downsample(h)
 | |
| 
 | |
|         # middle
 | |
|         h = self.mid.block_1(h, temb)
 | |
|         h = self.mid.attn_1(h)
 | |
|         h = self.mid.block_2(h, temb)
 | |
| 
 | |
|         # end
 | |
|         h = self.norm_out(h)
 | |
|         h = nonlinearity(h)
 | |
|         h = self.conv_out(h)
 | |
|         return h
 | |
| 
 | |
| 
 | |
| class Decoder(nn.Module):
 | |
|     def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
 | |
|                  attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
 | |
|                  resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
 | |
|                  conv_out_op=fcbh.ops.Conv2d,
 | |
|                  resnet_op=ResnetBlock,
 | |
|                  attn_op=AttnBlock,
 | |
|                 **ignorekwargs):
 | |
|         super().__init__()
 | |
|         if use_linear_attn: attn_type = "linear"
 | |
|         self.ch = ch
 | |
|         self.temb_ch = 0
 | |
|         self.num_resolutions = len(ch_mult)
 | |
|         self.num_res_blocks = num_res_blocks
 | |
|         self.resolution = resolution
 | |
|         self.in_channels = in_channels
 | |
|         self.give_pre_end = give_pre_end
 | |
|         self.tanh_out = tanh_out
 | |
| 
 | |
|         # compute in_ch_mult, block_in and curr_res at lowest res
 | |
|         in_ch_mult = (1,)+tuple(ch_mult)
 | |
|         block_in = ch*ch_mult[self.num_resolutions-1]
 | |
|         curr_res = resolution // 2**(self.num_resolutions-1)
 | |
|         self.z_shape = (1,z_channels,curr_res,curr_res)
 | |
|         print("Working with z of shape {} = {} dimensions.".format(
 | |
|             self.z_shape, np.prod(self.z_shape)))
 | |
| 
 | |
|         # z to block_in
 | |
|         self.conv_in = fcbh.ops.Conv2d(z_channels,
 | |
|                                        block_in,
 | |
|                                        kernel_size=3,
 | |
|                                        stride=1,
 | |
|                                        padding=1)
 | |
| 
 | |
|         # middle
 | |
|         self.mid = nn.Module()
 | |
|         self.mid.block_1 = resnet_op(in_channels=block_in,
 | |
|                                        out_channels=block_in,
 | |
|                                        temb_channels=self.temb_ch,
 | |
|                                        dropout=dropout)
 | |
|         self.mid.attn_1 = attn_op(block_in)
 | |
|         self.mid.block_2 = resnet_op(in_channels=block_in,
 | |
|                                        out_channels=block_in,
 | |
|                                        temb_channels=self.temb_ch,
 | |
|                                        dropout=dropout)
 | |
| 
 | |
|         # upsampling
 | |
|         self.up = nn.ModuleList()
 | |
|         for i_level in reversed(range(self.num_resolutions)):
 | |
|             block = nn.ModuleList()
 | |
|             attn = nn.ModuleList()
 | |
|             block_out = ch*ch_mult[i_level]
 | |
|             for i_block in range(self.num_res_blocks+1):
 | |
|                 block.append(resnet_op(in_channels=block_in,
 | |
|                                          out_channels=block_out,
 | |
|                                          temb_channels=self.temb_ch,
 | |
|                                          dropout=dropout))
 | |
|                 block_in = block_out
 | |
|                 if curr_res in attn_resolutions:
 | |
|                     attn.append(attn_op(block_in))
 | |
|             up = nn.Module()
 | |
|             up.block = block
 | |
|             up.attn = attn
 | |
|             if i_level != 0:
 | |
|                 up.upsample = Upsample(block_in, resamp_with_conv)
 | |
|                 curr_res = curr_res * 2
 | |
|             self.up.insert(0, up) # prepend to get consistent order
 | |
| 
 | |
|         # end
 | |
|         self.norm_out = Normalize(block_in)
 | |
|         self.conv_out = conv_out_op(block_in,
 | |
|                                         out_ch,
 | |
|                                         kernel_size=3,
 | |
|                                         stride=1,
 | |
|                                         padding=1)
 | |
| 
 | |
|     def forward(self, z, **kwargs):
 | |
|         #assert z.shape[1:] == self.z_shape[1:]
 | |
|         self.last_z_shape = z.shape
 | |
| 
 | |
|         # timestep embedding
 | |
|         temb = None
 | |
| 
 | |
|         # z to block_in
 | |
|         h = self.conv_in(z)
 | |
| 
 | |
|         # middle
 | |
|         h = self.mid.block_1(h, temb, **kwargs)
 | |
|         h = self.mid.attn_1(h, **kwargs)
 | |
|         h = self.mid.block_2(h, temb, **kwargs)
 | |
| 
 | |
|         # upsampling
 | |
|         for i_level in reversed(range(self.num_resolutions)):
 | |
|             for i_block in range(self.num_res_blocks+1):
 | |
|                 h = self.up[i_level].block[i_block](h, temb, **kwargs)
 | |
|                 if len(self.up[i_level].attn) > 0:
 | |
|                     h = self.up[i_level].attn[i_block](h, **kwargs)
 | |
|             if i_level != 0:
 | |
|                 h = self.up[i_level].upsample(h)
 | |
| 
 | |
|         # end
 | |
|         if self.give_pre_end:
 | |
|             return h
 | |
| 
 | |
|         h = self.norm_out(h)
 | |
|         h = nonlinearity(h)
 | |
|         h = self.conv_out(h, **kwargs)
 | |
|         if self.tanh_out:
 | |
|             h = torch.tanh(h)
 | |
|         return h
 |