Many users reported that image quality is different from 2.1.824. We reviewed all codes and fixed several precision problems in 2.1.846.
289 lines
11 KiB
Python
289 lines
11 KiB
Python
import torch
|
|
import ldm_patched.modules.clip_vision
|
|
import safetensors.torch as sf
|
|
import ldm_patched.modules.model_management as model_management
|
|
import contextlib
|
|
import ldm_patched.ldm.modules.attention as attention
|
|
|
|
from extras.resampler import Resampler
|
|
from ldm_patched.modules.model_patcher import ModelPatcher
|
|
from modules.core import numpy_to_pytorch
|
|
|
|
|
|
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
|
|
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
|
|
|
|
|
|
def sdp(q, k, v, extra_options):
|
|
return attention.optimized_attention(q, k, v, heads=extra_options["n_heads"], mask=None)
|
|
|
|
|
|
class ImageProjModel(torch.nn.Module):
|
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
|
super().__init__()
|
|
|
|
self.cross_attention_dim = cross_attention_dim
|
|
self.clip_extra_context_tokens = clip_extra_context_tokens
|
|
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
|
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
|
|
|
def forward(self, image_embeds):
|
|
embeds = image_embeds
|
|
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens,
|
|
self.cross_attention_dim)
|
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
|
return clip_extra_context_tokens
|
|
|
|
|
|
class To_KV(torch.nn.Module):
|
|
def __init__(self, cross_attention_dim):
|
|
super().__init__()
|
|
|
|
channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
|
|
self.to_kvs = torch.nn.ModuleList(
|
|
[torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])
|
|
|
|
def load_state_dict_ordered(self, sd):
|
|
state_dict = []
|
|
for i in range(4096):
|
|
for k in ['k', 'v']:
|
|
key = f'{i}.to_{k}_ip.weight'
|
|
if key in sd:
|
|
state_dict.append(sd[key])
|
|
for i, v in enumerate(state_dict):
|
|
self.to_kvs[i].weight = torch.nn.Parameter(v, requires_grad=False)
|
|
|
|
|
|
class IPAdapterModel(torch.nn.Module):
|
|
def __init__(self, state_dict, plus, cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4,
|
|
sdxl_plus=False):
|
|
super().__init__()
|
|
self.plus = plus
|
|
if self.plus:
|
|
self.image_proj_model = Resampler(
|
|
dim=1280 if sdxl_plus else cross_attention_dim,
|
|
depth=4,
|
|
dim_head=64,
|
|
heads=20 if sdxl_plus else 12,
|
|
num_queries=clip_extra_context_tokens,
|
|
embedding_dim=clip_embeddings_dim,
|
|
output_dim=cross_attention_dim,
|
|
ff_mult=4
|
|
)
|
|
else:
|
|
self.image_proj_model = ImageProjModel(
|
|
cross_attention_dim=cross_attention_dim,
|
|
clip_embeddings_dim=clip_embeddings_dim,
|
|
clip_extra_context_tokens=clip_extra_context_tokens
|
|
)
|
|
|
|
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
|
self.ip_layers = To_KV(cross_attention_dim)
|
|
self.ip_layers.load_state_dict_ordered(state_dict["ip_adapter"])
|
|
|
|
|
|
clip_vision: ldm_patched.modules.clip_vision.ClipVisionModel = None
|
|
ip_negative: torch.Tensor = None
|
|
ip_adapters: dict = {}
|
|
|
|
|
|
def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path):
|
|
global clip_vision, ip_negative, ip_adapters
|
|
|
|
if clip_vision is None and isinstance(clip_vision_path, str):
|
|
clip_vision = ldm_patched.modules.clip_vision.load(clip_vision_path)
|
|
|
|
if ip_negative is None and isinstance(ip_negative_path, str):
|
|
ip_negative = sf.load_file(ip_negative_path)['data']
|
|
|
|
if not isinstance(ip_adapter_path, str) or ip_adapter_path in ip_adapters:
|
|
return
|
|
|
|
load_device = model_management.get_torch_device()
|
|
offload_device = torch.device('cpu')
|
|
|
|
use_fp16 = model_management.should_use_fp16(device=load_device)
|
|
ip_state_dict = torch.load(ip_adapter_path, map_location="cpu")
|
|
plus = "latents" in ip_state_dict["image_proj"]
|
|
cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
|
|
sdxl = cross_attention_dim == 2048
|
|
sdxl_plus = sdxl and plus
|
|
|
|
if plus:
|
|
clip_extra_context_tokens = ip_state_dict["image_proj"]["latents"].shape[1]
|
|
clip_embeddings_dim = ip_state_dict["image_proj"]["latents"].shape[2]
|
|
else:
|
|
clip_extra_context_tokens = ip_state_dict["image_proj"]["proj.weight"].shape[0] // cross_attention_dim
|
|
clip_embeddings_dim = None
|
|
|
|
ip_adapter = IPAdapterModel(
|
|
ip_state_dict,
|
|
plus=plus,
|
|
cross_attention_dim=cross_attention_dim,
|
|
clip_embeddings_dim=clip_embeddings_dim,
|
|
clip_extra_context_tokens=clip_extra_context_tokens,
|
|
sdxl_plus=sdxl_plus
|
|
)
|
|
ip_adapter.sdxl = sdxl
|
|
ip_adapter.load_device = load_device
|
|
ip_adapter.offload_device = offload_device
|
|
ip_adapter.dtype = torch.float16 if use_fp16 else torch.float32
|
|
ip_adapter.to(offload_device, dtype=ip_adapter.dtype)
|
|
|
|
image_proj_model = ModelPatcher(model=ip_adapter.image_proj_model, load_device=load_device,
|
|
offload_device=offload_device)
|
|
ip_layers = ModelPatcher(model=ip_adapter.ip_layers, load_device=load_device,
|
|
offload_device=offload_device)
|
|
|
|
ip_adapters[ip_adapter_path] = dict(
|
|
ip_adapter=ip_adapter,
|
|
image_proj_model=image_proj_model,
|
|
ip_layers=ip_layers,
|
|
ip_unconds=None
|
|
)
|
|
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def clip_preprocess(image):
|
|
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
|
|
std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
|
|
image = image.movedim(-1, 1)
|
|
|
|
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
|
|
B, C, H, W = image.shape
|
|
assert H == 224 and W == 224
|
|
|
|
return (image - mean) / std
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def preprocess(img, ip_adapter_path):
|
|
global ip_adapters
|
|
entry = ip_adapters[ip_adapter_path]
|
|
|
|
ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher)
|
|
pixel_values = clip_preprocess(numpy_to_pytorch(img).to(clip_vision.load_device))
|
|
|
|
if clip_vision.dtype != torch.float32:
|
|
precision_scope = torch.autocast
|
|
else:
|
|
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
|
|
|
with precision_scope(ldm_patched.modules.model_management.get_autocast_device(clip_vision.load_device), torch.float32):
|
|
outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True)
|
|
|
|
ip_adapter = entry['ip_adapter']
|
|
ip_layers = entry['ip_layers']
|
|
image_proj_model = entry['image_proj_model']
|
|
ip_unconds = entry['ip_unconds']
|
|
|
|
if ip_adapter.plus:
|
|
cond = outputs.hidden_states[-2]
|
|
else:
|
|
cond = outputs.image_embeds
|
|
|
|
cond = cond.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
|
|
|
|
ldm_patched.modules.model_management.load_model_gpu(image_proj_model)
|
|
cond = image_proj_model.model(cond).to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
|
|
|
|
ldm_patched.modules.model_management.load_model_gpu(ip_layers)
|
|
|
|
if ip_unconds is None:
|
|
uncond = ip_negative.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
|
|
ip_unconds = [m(uncond).cpu() for m in ip_layers.model.to_kvs]
|
|
entry['ip_unconds'] = ip_unconds
|
|
|
|
ip_conds = [m(cond).cpu() for m in ip_layers.model.to_kvs]
|
|
|
|
return ip_conds, ip_unconds
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def patch_model(model, tasks):
|
|
new_model = model.clone()
|
|
|
|
def make_attn_patcher(ip_index):
|
|
def patcher(n, context_attn2, value_attn2, extra_options):
|
|
org_dtype = n.dtype
|
|
current_step = float(model.model.diffusion_model.current_step.detach().cpu().numpy()[0])
|
|
cond_or_uncond = extra_options['cond_or_uncond']
|
|
|
|
q = n
|
|
k = [context_attn2]
|
|
v = [value_attn2]
|
|
b, _, _ = q.shape
|
|
|
|
for (cs, ucs), cn_stop, cn_weight in tasks:
|
|
if current_step < cn_stop:
|
|
ip_k_c = cs[ip_index * 2].to(q)
|
|
ip_v_c = cs[ip_index * 2 + 1].to(q)
|
|
ip_k_uc = ucs[ip_index * 2].to(q)
|
|
ip_v_uc = ucs[ip_index * 2 + 1].to(q)
|
|
|
|
ip_k = torch.cat([(ip_k_c, ip_k_uc)[i] for i in cond_or_uncond], dim=0)
|
|
ip_v = torch.cat([(ip_v_c, ip_v_uc)[i] for i in cond_or_uncond], dim=0)
|
|
|
|
# Midjourney's attention formulation of image prompt (non-official reimplementation)
|
|
# Written by Lvmin Zhang at Stanford University, 2023 Dec
|
|
# For non-commercial use only - if you use this in commercial project then
|
|
# probably it has some intellectual property issues.
|
|
# Contact lvminzhang@acm.org if you are not sure.
|
|
|
|
# Below is the sensitive part with potential intellectual property issues.
|
|
|
|
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
|
|
ip_v_offset = ip_v - ip_v_mean
|
|
|
|
B, F, C = ip_k.shape
|
|
channel_penalty = float(C) / 1280.0
|
|
weight = cn_weight * channel_penalty
|
|
|
|
ip_k = ip_k * weight
|
|
ip_v = ip_v_offset + ip_v_mean * weight
|
|
|
|
k.append(ip_k)
|
|
v.append(ip_v)
|
|
|
|
k = torch.cat(k, dim=1)
|
|
v = torch.cat(v, dim=1)
|
|
out = sdp(q, k, v, extra_options)
|
|
|
|
|
|
return out.to(dtype=org_dtype)
|
|
return patcher
|
|
|
|
def set_model_patch_replace(model, number, key):
|
|
to = model.model_options["transformer_options"]
|
|
if "patches_replace" not in to:
|
|
to["patches_replace"] = {}
|
|
if "attn2" not in to["patches_replace"]:
|
|
to["patches_replace"]["attn2"] = {}
|
|
if key not in to["patches_replace"]["attn2"]:
|
|
to["patches_replace"]["attn2"][key] = make_attn_patcher(number)
|
|
|
|
number = 0
|
|
|
|
for id in [4, 5, 7, 8]:
|
|
block_indices = range(2) if id in [4, 5] else range(10)
|
|
for index in block_indices:
|
|
set_model_patch_replace(new_model, number, ("input", id, index))
|
|
number += 1
|
|
|
|
for id in range(6):
|
|
block_indices = range(2) if id in [3, 4, 5] else range(10)
|
|
for index in block_indices:
|
|
set_model_patch_replace(new_model, number, ("output", id, index))
|
|
number += 1
|
|
|
|
for index in range(10):
|
|
set_model_patch_replace(new_model, number, ("middle", 0, index))
|
|
number += 1
|
|
|
|
return new_model
|