* only make stop_button and skip_button interactive when rendering process starts
fix inconsistency in behaviour of stop_button and skip_button as it was possible to skip or stop other users processes while still being in queue
* use AsyncTask for last_stop handling instead of shared
* Revert "only make stop_button and skip_button interactive when rendering process starts"
This reverts commit d3f9156854
.
* introduce state for task skipping/stopping
* fix return parameters of stop_clicked
* code cleanup, do not disable skip/stop on stop_clicked
* reset last_stop when skipping for further processing
* fix: replace fcbh with ldm_patched
* fix: use currentTask instead of ctrls after merging upstream
* feat: extract attribute disable_preview
* feat: extract attribute adm_scaler_positive
* feat: extract attribute adm_scaler_negative
* feat: extract attribute adm_scaler_end
* feat: extract attribute adaptive_cfg
* feat: extract attribute sampler_name
* feat: extract attribute scheduler_name
* feat: extract attribute generate_image_grid
* feat: extract attribute overwrite_step
* feat: extract attribute overwrite_switch
* feat: extract attribute overwrite_width
* feat: extract attribute overwrite_height
* feat: extract attribute overwrite_vary_strength
* feat: extract attribute overwrite_upscale_strength
* feat: extract attribute mixing_image_prompt_and_vary_upscale
* feat: extract attribute mixing_image_prompt_and_inpaint
* feat: extract attribute debugging_cn_preprocessor
* feat: extract attribute skipping_cn_preprocessor
* feat: extract attribute canny_low_threshold
* feat: extract attribute canny_high_threshold
* feat: extract attribute refiner_swap_method
* feat: extract freeu_ctrls attributes
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2
* feat: extract inpaint_ctrls attributes
debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine, inpaint_strength, inpaint_respective_field, inpaint_mask_upload_checkbox, invert_mask_checkbox, inpaint_erode_or_dilate
* wip: add TODOs
* chore: cleanup code
* feat: extract attribute controlnet_softness
* feat: extract remaining attributes, do not use globals in patch
* fix: resolve circular import, patch_all now in async_worker
* chore: cleanup pid code
498 lines
16 KiB
Python
498 lines
16 KiB
Python
import modules.core as core
|
|
import os
|
|
import torch
|
|
import modules.patch
|
|
import modules.config
|
|
import ldm_patched.modules.model_management
|
|
import ldm_patched.modules.latent_formats
|
|
import modules.inpaint_worker
|
|
import extras.vae_interpose as vae_interpose
|
|
from extras.expansion import FooocusExpansion
|
|
|
|
from ldm_patched.modules.model_base import SDXL, SDXLRefiner
|
|
from modules.sample_hijack import clip_separate
|
|
|
|
|
|
model_base = core.StableDiffusionModel()
|
|
model_refiner = core.StableDiffusionModel()
|
|
|
|
final_expansion = None
|
|
final_unet = None
|
|
final_clip = None
|
|
final_vae = None
|
|
final_refiner_unet = None
|
|
final_refiner_vae = None
|
|
|
|
loaded_ControlNets = {}
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def refresh_controlnets(model_paths):
|
|
global loaded_ControlNets
|
|
cache = {}
|
|
for p in model_paths:
|
|
if p is not None:
|
|
if p in loaded_ControlNets:
|
|
cache[p] = loaded_ControlNets[p]
|
|
else:
|
|
cache[p] = core.load_controlnet(p)
|
|
loaded_ControlNets = cache
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def assert_model_integrity():
|
|
error_message = None
|
|
|
|
if not isinstance(model_base.unet_with_lora.model, SDXL):
|
|
error_message = 'You have selected base model other than SDXL. This is not supported yet.'
|
|
|
|
if error_message is not None:
|
|
raise NotImplementedError(error_message)
|
|
|
|
return True
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def refresh_base_model(name):
|
|
global model_base
|
|
|
|
filename = os.path.abspath(os.path.realpath(os.path.join(modules.config.path_checkpoints, name)))
|
|
|
|
if model_base.filename == filename:
|
|
return
|
|
|
|
model_base = core.StableDiffusionModel()
|
|
model_base = core.load_model(filename)
|
|
print(f'Base model loaded: {model_base.filename}')
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def refresh_refiner_model(name):
|
|
global model_refiner
|
|
|
|
filename = os.path.abspath(os.path.realpath(os.path.join(modules.config.path_checkpoints, name)))
|
|
|
|
if model_refiner.filename == filename:
|
|
return
|
|
|
|
model_refiner = core.StableDiffusionModel()
|
|
|
|
if name == 'None':
|
|
print(f'Refiner unloaded.')
|
|
return
|
|
|
|
model_refiner = core.load_model(filename)
|
|
print(f'Refiner model loaded: {model_refiner.filename}')
|
|
|
|
if isinstance(model_refiner.unet.model, SDXL):
|
|
model_refiner.clip = None
|
|
model_refiner.vae = None
|
|
elif isinstance(model_refiner.unet.model, SDXLRefiner):
|
|
model_refiner.clip = None
|
|
model_refiner.vae = None
|
|
else:
|
|
model_refiner.clip = None
|
|
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def synthesize_refiner_model():
|
|
global model_base, model_refiner
|
|
|
|
print('Synthetic Refiner Activated')
|
|
model_refiner = core.StableDiffusionModel(
|
|
unet=model_base.unet,
|
|
vae=model_base.vae,
|
|
clip=model_base.clip,
|
|
clip_vision=model_base.clip_vision,
|
|
filename=model_base.filename
|
|
)
|
|
model_refiner.vae = None
|
|
model_refiner.clip = None
|
|
model_refiner.clip_vision = None
|
|
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def refresh_loras(loras, base_model_additional_loras=None):
|
|
global model_base, model_refiner
|
|
|
|
if not isinstance(base_model_additional_loras, list):
|
|
base_model_additional_loras = []
|
|
|
|
model_base.refresh_loras(loras + base_model_additional_loras)
|
|
model_refiner.refresh_loras(loras)
|
|
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def clip_encode_single(clip, text, verbose=False):
|
|
cached = clip.fcs_cond_cache.get(text, None)
|
|
if cached is not None:
|
|
if verbose:
|
|
print(f'[CLIP Cached] {text}')
|
|
return cached
|
|
tokens = clip.tokenize(text)
|
|
result = clip.encode_from_tokens(tokens, return_pooled=True)
|
|
clip.fcs_cond_cache[text] = result
|
|
if verbose:
|
|
print(f'[CLIP Encoded] {text}')
|
|
return result
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def clone_cond(conds):
|
|
results = []
|
|
|
|
for c, p in conds:
|
|
p = p["pooled_output"]
|
|
|
|
if isinstance(c, torch.Tensor):
|
|
c = c.clone()
|
|
|
|
if isinstance(p, torch.Tensor):
|
|
p = p.clone()
|
|
|
|
results.append([c, {"pooled_output": p}])
|
|
|
|
return results
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def clip_encode(texts, pool_top_k=1):
|
|
global final_clip
|
|
|
|
if final_clip is None:
|
|
return None
|
|
if not isinstance(texts, list):
|
|
return None
|
|
if len(texts) == 0:
|
|
return None
|
|
|
|
cond_list = []
|
|
pooled_acc = 0
|
|
|
|
for i, text in enumerate(texts):
|
|
cond, pooled = clip_encode_single(final_clip, text)
|
|
cond_list.append(cond)
|
|
if i < pool_top_k:
|
|
pooled_acc += pooled
|
|
|
|
return [[torch.cat(cond_list, dim=1), {"pooled_output": pooled_acc}]]
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def clear_all_caches():
|
|
final_clip.fcs_cond_cache = {}
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def prepare_text_encoder(async_call=True):
|
|
if async_call:
|
|
# TODO: make sure that this is always called in an async way so that users cannot feel it.
|
|
pass
|
|
assert_model_integrity()
|
|
ldm_patched.modules.model_management.load_models_gpu([final_clip.patcher, final_expansion.patcher])
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def refresh_everything(refiner_model_name, base_model_name, loras,
|
|
base_model_additional_loras=None, use_synthetic_refiner=False):
|
|
global final_unet, final_clip, final_vae, final_refiner_unet, final_refiner_vae, final_expansion
|
|
|
|
final_unet = None
|
|
final_clip = None
|
|
final_vae = None
|
|
final_refiner_unet = None
|
|
final_refiner_vae = None
|
|
|
|
if use_synthetic_refiner and refiner_model_name == 'None':
|
|
print('Synthetic Refiner Activated')
|
|
refresh_base_model(base_model_name)
|
|
synthesize_refiner_model()
|
|
else:
|
|
refresh_refiner_model(refiner_model_name)
|
|
refresh_base_model(base_model_name)
|
|
|
|
refresh_loras(loras, base_model_additional_loras=base_model_additional_loras)
|
|
assert_model_integrity()
|
|
|
|
final_unet = model_base.unet_with_lora
|
|
final_clip = model_base.clip_with_lora
|
|
final_vae = model_base.vae
|
|
|
|
final_refiner_unet = model_refiner.unet_with_lora
|
|
final_refiner_vae = model_refiner.vae
|
|
|
|
if final_expansion is None:
|
|
final_expansion = FooocusExpansion()
|
|
|
|
prepare_text_encoder(async_call=True)
|
|
clear_all_caches()
|
|
return
|
|
|
|
|
|
refresh_everything(
|
|
refiner_model_name=modules.config.default_refiner_model_name,
|
|
base_model_name=modules.config.default_base_model_name,
|
|
loras=modules.config.default_loras
|
|
)
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def vae_parse(latent):
|
|
if final_refiner_vae is None:
|
|
return latent
|
|
|
|
result = vae_interpose.parse(latent["samples"])
|
|
return {'samples': result}
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def calculate_sigmas_all(sampler, model, scheduler, steps):
|
|
from ldm_patched.modules.samplers import calculate_sigmas_scheduler
|
|
|
|
discard_penultimate_sigma = False
|
|
if sampler in ['dpm_2', 'dpm_2_ancestral']:
|
|
steps += 1
|
|
discard_penultimate_sigma = True
|
|
|
|
sigmas = calculate_sigmas_scheduler(model, scheduler, steps)
|
|
|
|
if discard_penultimate_sigma:
|
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
|
return sigmas
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def calculate_sigmas(sampler, model, scheduler, steps, denoise):
|
|
if denoise is None or denoise > 0.9999:
|
|
sigmas = calculate_sigmas_all(sampler, model, scheduler, steps)
|
|
else:
|
|
new_steps = int(steps / denoise)
|
|
sigmas = calculate_sigmas_all(sampler, model, scheduler, new_steps)
|
|
sigmas = sigmas[-(steps + 1):]
|
|
return sigmas
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def get_candidate_vae(steps, switch, denoise=1.0, refiner_swap_method='joint'):
|
|
assert refiner_swap_method in ['joint', 'separate', 'vae']
|
|
|
|
if final_refiner_vae is not None and final_refiner_unet is not None:
|
|
if denoise > 0.9:
|
|
return final_vae, final_refiner_vae
|
|
else:
|
|
if denoise > (float(steps - switch) / float(steps)) ** 0.834: # karras 0.834
|
|
return final_vae, None
|
|
else:
|
|
return final_refiner_vae, None
|
|
|
|
return final_vae, final_refiner_vae
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def process_diffusion(positive_cond, negative_cond, steps, switch, width, height, image_seed, callback, sampler_name, scheduler_name, latent=None, denoise=1.0, tiled=False, cfg_scale=7.0, refiner_swap_method='joint', disable_preview=False):
|
|
target_unet, target_vae, target_refiner_unet, target_refiner_vae, target_clip \
|
|
= final_unet, final_vae, final_refiner_unet, final_refiner_vae, final_clip
|
|
|
|
assert refiner_swap_method in ['joint', 'separate', 'vae']
|
|
|
|
if final_refiner_vae is not None and final_refiner_unet is not None:
|
|
# Refiner Use Different VAE (then it is SD15)
|
|
if denoise > 0.9:
|
|
refiner_swap_method = 'vae'
|
|
else:
|
|
refiner_swap_method = 'joint'
|
|
if denoise > (float(steps - switch) / float(steps)) ** 0.834: # karras 0.834
|
|
target_unet, target_vae, target_refiner_unet, target_refiner_vae \
|
|
= final_unet, final_vae, None, None
|
|
print(f'[Sampler] only use Base because of partial denoise.')
|
|
else:
|
|
positive_cond = clip_separate(positive_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
|
|
negative_cond = clip_separate(negative_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
|
|
target_unet, target_vae, target_refiner_unet, target_refiner_vae \
|
|
= final_refiner_unet, final_refiner_vae, None, None
|
|
print(f'[Sampler] only use Refiner because of partial denoise.')
|
|
|
|
print(f'[Sampler] refiner_swap_method = {refiner_swap_method}')
|
|
|
|
if latent is None:
|
|
initial_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
|
|
else:
|
|
initial_latent = latent
|
|
|
|
minmax_sigmas = calculate_sigmas(sampler=sampler_name, scheduler=scheduler_name, model=final_unet.model, steps=steps, denoise=denoise)
|
|
sigma_min, sigma_max = minmax_sigmas[minmax_sigmas > 0].min(), minmax_sigmas.max()
|
|
sigma_min = float(sigma_min.cpu().numpy())
|
|
sigma_max = float(sigma_max.cpu().numpy())
|
|
print(f'[Sampler] sigma_min = {sigma_min}, sigma_max = {sigma_max}')
|
|
|
|
modules.patch.BrownianTreeNoiseSamplerPatched.global_init(
|
|
initial_latent['samples'].to(ldm_patched.modules.model_management.get_torch_device()),
|
|
sigma_min, sigma_max, seed=image_seed, cpu=False)
|
|
|
|
decoded_latent = None
|
|
|
|
if refiner_swap_method == 'joint':
|
|
sampled_latent = core.ksampler(
|
|
model=target_unet,
|
|
refiner=target_refiner_unet,
|
|
positive=positive_cond,
|
|
negative=negative_cond,
|
|
latent=initial_latent,
|
|
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
|
|
seed=image_seed,
|
|
denoise=denoise,
|
|
callback_function=callback,
|
|
cfg=cfg_scale,
|
|
sampler_name=sampler_name,
|
|
scheduler=scheduler_name,
|
|
refiner_switch=switch,
|
|
previewer_start=0,
|
|
previewer_end=steps,
|
|
disable_preview=disable_preview
|
|
)
|
|
decoded_latent = core.decode_vae(vae=target_vae, latent_image=sampled_latent, tiled=tiled)
|
|
|
|
if refiner_swap_method == 'separate':
|
|
sampled_latent = core.ksampler(
|
|
model=target_unet,
|
|
positive=positive_cond,
|
|
negative=negative_cond,
|
|
latent=initial_latent,
|
|
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=False,
|
|
seed=image_seed,
|
|
denoise=denoise,
|
|
callback_function=callback,
|
|
cfg=cfg_scale,
|
|
sampler_name=sampler_name,
|
|
scheduler=scheduler_name,
|
|
previewer_start=0,
|
|
previewer_end=steps,
|
|
disable_preview=disable_preview
|
|
)
|
|
print('Refiner swapped by changing ksampler. Noise preserved.')
|
|
|
|
target_model = target_refiner_unet
|
|
if target_model is None:
|
|
target_model = target_unet
|
|
print('Use base model to refine itself - this may because of developer mode.')
|
|
|
|
sampled_latent = core.ksampler(
|
|
model=target_model,
|
|
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
|
|
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
|
|
latent=sampled_latent,
|
|
steps=steps, start_step=switch, last_step=steps, disable_noise=True, force_full_denoise=True,
|
|
seed=image_seed,
|
|
denoise=denoise,
|
|
callback_function=callback,
|
|
cfg=cfg_scale,
|
|
sampler_name=sampler_name,
|
|
scheduler=scheduler_name,
|
|
previewer_start=switch,
|
|
previewer_end=steps,
|
|
disable_preview=disable_preview
|
|
)
|
|
|
|
target_model = target_refiner_vae
|
|
if target_model is None:
|
|
target_model = target_vae
|
|
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
|
|
|
|
if refiner_swap_method == 'vae':
|
|
modules.patch.patch_settings[os.getpid()].eps_record = 'vae'
|
|
|
|
if modules.inpaint_worker.current_task is not None:
|
|
modules.inpaint_worker.current_task.unswap()
|
|
|
|
sampled_latent = core.ksampler(
|
|
model=target_unet,
|
|
positive=positive_cond,
|
|
negative=negative_cond,
|
|
latent=initial_latent,
|
|
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=True,
|
|
seed=image_seed,
|
|
denoise=denoise,
|
|
callback_function=callback,
|
|
cfg=cfg_scale,
|
|
sampler_name=sampler_name,
|
|
scheduler=scheduler_name,
|
|
previewer_start=0,
|
|
previewer_end=steps,
|
|
disable_preview=disable_preview
|
|
)
|
|
print('Fooocus VAE-based swap.')
|
|
|
|
target_model = target_refiner_unet
|
|
if target_model is None:
|
|
target_model = target_unet
|
|
print('Use base model to refine itself - this may because of developer mode.')
|
|
|
|
sampled_latent = vae_parse(sampled_latent)
|
|
|
|
k_sigmas = 1.4
|
|
sigmas = calculate_sigmas(sampler=sampler_name,
|
|
scheduler=scheduler_name,
|
|
model=target_model.model,
|
|
steps=steps,
|
|
denoise=denoise)[switch:] * k_sigmas
|
|
len_sigmas = len(sigmas) - 1
|
|
|
|
noise_mean = torch.mean(modules.patch.patch_settings[os.getpid()].eps_record, dim=1, keepdim=True)
|
|
|
|
if modules.inpaint_worker.current_task is not None:
|
|
modules.inpaint_worker.current_task.swap()
|
|
|
|
sampled_latent = core.ksampler(
|
|
model=target_model,
|
|
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
|
|
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
|
|
latent=sampled_latent,
|
|
steps=len_sigmas, start_step=0, last_step=len_sigmas, disable_noise=False, force_full_denoise=True,
|
|
seed=image_seed+1,
|
|
denoise=denoise,
|
|
callback_function=callback,
|
|
cfg=cfg_scale,
|
|
sampler_name=sampler_name,
|
|
scheduler=scheduler_name,
|
|
previewer_start=switch,
|
|
previewer_end=steps,
|
|
sigmas=sigmas,
|
|
noise_mean=noise_mean,
|
|
disable_preview=disable_preview
|
|
)
|
|
|
|
target_model = target_refiner_vae
|
|
if target_model is None:
|
|
target_model = target_vae
|
|
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
|
|
|
|
images = core.pytorch_to_numpy(decoded_latent)
|
|
modules.patch.patch_settings[os.getpid()].eps_record = None
|
|
return images
|