Fooocus/modules/default_pipeline.py
2023-10-22 12:09:24 -07:00

502 lines
16 KiB
Python

import modules.core as core
import os
import torch
import modules.patch
import modules.path
import fcbh.model_management
import fcbh.latent_formats
import modules.inpaint_worker
import fooocus_extras.vae_interpose as vae_interpose
from fcbh.model_base import SDXL, SDXLRefiner
from modules.expansion import FooocusExpansion
from modules.sample_hijack import clip_separate
from fcbh.k_diffusion.sampling import BrownianTreeNoiseSampler
xl_base: core.StableDiffusionModel = None
xl_base_hash = ''
xl_base_patched: core.StableDiffusionModel = None
xl_base_patched_hash = ''
xl_refiner: core.StableDiffusionModel = None
xl_refiner_hash = ''
final_expansion = None
final_unet = None
final_clip = None
final_vae = None
final_refiner_unet = None
final_refiner_vae = None
loaded_ControlNets = {}
@torch.no_grad()
@torch.inference_mode()
def refresh_controlnets(model_paths):
global loaded_ControlNets
cache = {}
for p in model_paths:
if p is not None:
if p in loaded_ControlNets:
cache[p] = loaded_ControlNets[p]
else:
cache[p] = core.load_controlnet(p)
loaded_ControlNets = cache
return
@torch.no_grad()
@torch.inference_mode()
def assert_model_integrity():
error_message = None
if xl_base is None:
error_message = 'You have not selected SDXL base model.'
if xl_base_patched is None:
error_message = 'You have not selected SDXL base model.'
if not isinstance(xl_base.unet.model, SDXL):
error_message = 'You have selected base model other than SDXL. This is not supported yet.'
if not isinstance(xl_base_patched.unet.model, SDXL):
error_message = 'You have selected base model other than SDXL. This is not supported yet.'
if xl_refiner is not None:
if xl_refiner.unet is None or xl_refiner.unet.model is None:
error_message = 'You have selected an invalid refiner!'
# elif not isinstance(xl_refiner.unet.model, SDXL) and not isinstance(xl_refiner.unet.model, SDXLRefiner):
# error_message = 'SD1.5 or 2.1 as refiner is not supported!'
if error_message is not None:
raise NotImplementedError(error_message)
return True
@torch.no_grad()
@torch.inference_mode()
def refresh_base_model(name):
global xl_base, xl_base_hash, xl_base_patched, xl_base_patched_hash
filename = os.path.abspath(os.path.realpath(os.path.join(modules.path.modelfile_path, name)))
model_hash = filename
if xl_base_hash == model_hash:
return
xl_base = None
xl_base_hash = ''
xl_base_patched = None
xl_base_patched_hash = ''
xl_base = core.load_model(filename)
xl_base_hash = model_hash
print(f'Base model loaded: {model_hash}')
return
@torch.no_grad()
@torch.inference_mode()
def refresh_refiner_model(name):
global xl_refiner, xl_refiner_hash
filename = os.path.abspath(os.path.realpath(os.path.join(modules.path.modelfile_path, name)))
model_hash = filename
if xl_refiner_hash == model_hash:
return
xl_refiner = None
xl_refiner_hash = ''
if name == 'None':
print(f'Refiner unloaded.')
return
xl_refiner = core.load_model(filename)
xl_refiner_hash = model_hash
print(f'Refiner model loaded: {model_hash}')
if isinstance(xl_refiner.unet.model, SDXL):
xl_refiner.clip = None
xl_refiner.vae = None
elif isinstance(xl_refiner.unet.model, SDXLRefiner):
xl_refiner.clip = None
xl_refiner.vae = None
else:
xl_refiner.clip = None
return
@torch.no_grad()
@torch.inference_mode()
def refresh_loras(loras):
global xl_base, xl_base_patched, xl_base_patched_hash
if xl_base_patched_hash == str(loras):
return
model = xl_base
for name, weight in loras:
if name == 'None':
continue
if os.path.exists(name):
filename = name
else:
filename = os.path.join(modules.path.lorafile_path, name)
assert os.path.exists(filename), 'Lora file not found!'
model = core.load_sd_lora(model, filename, strength_model=weight, strength_clip=weight)
xl_base_patched = model
xl_base_patched_hash = str(loras)
print(f'LoRAs loaded: {xl_base_patched_hash}')
return
@torch.no_grad()
@torch.inference_mode()
def clip_encode_single(clip, text, verbose=False):
cached = clip.fcs_cond_cache.get(text, None)
if cached is not None:
if verbose:
print(f'[CLIP Cached] {text}')
return cached
tokens = clip.tokenize(text)
result = clip.encode_from_tokens(tokens, return_pooled=True)
clip.fcs_cond_cache[text] = result
if verbose:
print(f'[CLIP Encoded] {text}')
return result
@torch.no_grad()
@torch.inference_mode()
def clip_encode(texts, pool_top_k=1):
global final_clip
if final_clip is None:
return None
if not isinstance(texts, list):
return None
if len(texts) == 0:
return None
cond_list = []
pooled_acc = 0
for i, text in enumerate(texts):
cond, pooled = clip_encode_single(final_clip, text)
cond_list.append(cond)
if i < pool_top_k:
pooled_acc += pooled
return [[torch.cat(cond_list, dim=1), {"pooled_output": pooled_acc}]]
@torch.no_grad()
@torch.inference_mode()
def clear_all_caches():
xl_base.clip.fcs_cond_cache = {}
xl_base_patched.clip.fcs_cond_cache = {}
@torch.no_grad()
@torch.inference_mode()
def prepare_text_encoder(async_call=True):
if async_call:
# TODO: make sure that this is always called in an async way so that users cannot feel it.
pass
assert_model_integrity()
fcbh.model_management.load_models_gpu([final_clip.patcher, final_expansion.patcher])
return
@torch.no_grad()
@torch.inference_mode()
def refresh_everything(refiner_model_name, base_model_name, loras):
global final_unet, final_clip, final_vae, final_refiner_unet, final_refiner_vae, final_expansion
final_unet = None
final_clip = None
final_vae = None
final_refiner_unet = None
final_refiner_vae = None
refresh_refiner_model(refiner_model_name)
refresh_base_model(base_model_name)
refresh_loras(loras)
assert_model_integrity()
final_unet = xl_base_patched.unet
final_clip = xl_base_patched.clip
final_vae = xl_base_patched.vae
final_unet.model.diffusion_model.in_inpaint = False
if xl_refiner is not None:
final_refiner_unet = xl_refiner.unet
final_refiner_vae = xl_refiner.vae
if final_refiner_unet is not None:
final_refiner_unet.model.diffusion_model.in_inpaint = False
if final_expansion is None:
final_expansion = FooocusExpansion()
prepare_text_encoder(async_call=True)
clear_all_caches()
return
refresh_everything(
refiner_model_name=modules.path.default_refiner_model_name,
base_model_name=modules.path.default_base_model_name,
loras=[
(modules.path.default_lora_name, modules.path.default_lora_weight),
('None', modules.path.default_lora_weight),
('None', modules.path.default_lora_weight),
('None', modules.path.default_lora_weight),
('None', modules.path.default_lora_weight)
]
)
@torch.no_grad()
@torch.inference_mode()
def vae_parse(latent):
if final_refiner_vae is None:
return latent
result = vae_interpose.parse(latent["samples"])
return {'samples': result}
@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas_all(sampler, model, scheduler, steps):
from fcbh.samplers import calculate_sigmas_scheduler
discard_penultimate_sigma = False
if sampler in ['dpm_2', 'dpm_2_ancestral']:
steps += 1
discard_penultimate_sigma = True
sigmas = calculate_sigmas_scheduler(model, scheduler, steps)
if discard_penultimate_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas(sampler, model, scheduler, steps, denoise):
if denoise is None or denoise > 0.9999:
sigmas = calculate_sigmas_all(sampler, model, scheduler, steps)
else:
new_steps = int(steps / denoise)
sigmas = calculate_sigmas_all(sampler, model, scheduler, new_steps)
sigmas = sigmas[-(steps + 1):]
return sigmas
@torch.no_grad()
@torch.inference_mode()
def process_diffusion(positive_cond, negative_cond, steps, switch, width, height, image_seed, callback, sampler_name, scheduler_name, latent=None, denoise=1.0, tiled=False, cfg_scale=7.0, refiner_swap_method='joint'):
global final_unet, final_refiner_unet, final_vae, final_refiner_vae
assert refiner_swap_method in ['joint', 'separate', 'vae', 'upscale']
refiner_use_different_vae = final_refiner_vae is not None and final_refiner_unet is not None
if refiner_swap_method == 'upscale':
if not refiner_use_different_vae:
refiner_swap_method = 'joint'
else:
if refiner_use_different_vae:
if denoise > 0.95:
refiner_swap_method = 'vae'
else:
# VAE swap only support full denoise
# Disable refiner to avoid SD15 in joint/separate swap
final_refiner_unet = None
final_refiner_vae = None
print(f'[Sampler] refiner_swap_method = {refiner_swap_method}')
if latent is None:
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
else:
empty_latent = latent
minmax_sigmas = calculate_sigmas(sampler=sampler_name, scheduler=scheduler_name, model=final_unet.model, steps=steps, denoise=denoise)
sigma_min, sigma_max = minmax_sigmas[minmax_sigmas > 0].min(), minmax_sigmas.max()
sigma_min = float(sigma_min.cpu().numpy())
sigma_max = float(sigma_max.cpu().numpy())
print(f'[Sampler] sigma_min = {sigma_min}, sigma_max = {sigma_max}')
modules.patch.globalBrownianTreeNoiseSampler = BrownianTreeNoiseSampler(
empty_latent['samples'].to(fcbh.model_management.get_torch_device()),
sigma_min, sigma_max, seed=image_seed, cpu=False)
decoded_latent = None
if refiner_swap_method == 'joint':
sampled_latent = core.ksampler(
model=final_unet,
refiner=final_refiner_unet,
positive=positive_cond,
negative=negative_cond,
latent=empty_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
refiner_switch=switch,
previewer_start=0,
previewer_end=steps,
)
decoded_latent = core.decode_vae(vae=final_vae, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'upscale':
sampled_latent = core.ksampler(
model=final_refiner_unet,
positive=clip_separate(positive_cond, target_model=final_refiner_unet.model, target_clip=final_clip),
negative=clip_separate(negative_cond, target_model=final_refiner_unet.model, target_clip=final_clip),
latent=empty_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=0,
previewer_end=steps,
)
decoded_latent = core.decode_vae(vae=final_refiner_vae, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'separate':
sampled_latent = core.ksampler(
model=final_unet,
positive=positive_cond,
negative=negative_cond,
latent=empty_latent,
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=False,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=0,
previewer_end=steps,
)
print('Refiner swapped by changing ksampler. Noise preserved.')
target_model = final_refiner_unet
if target_model is None:
target_model = final_unet
print('Use base model to refine itself - this may because of developer mode.')
sampled_latent = core.ksampler(
model=target_model,
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=final_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=final_clip),
latent=sampled_latent,
steps=steps, start_step=switch, last_step=steps, disable_noise=True, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=switch,
previewer_end=steps,
)
target_model = final_refiner_vae
if target_model is None:
target_model = final_vae
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'vae':
modules.patch.eps_record = 'vae'
if modules.inpaint_worker.current_task is not None:
modules.inpaint_worker.current_task.unswap()
sampled_latent = core.ksampler(
model=final_unet,
positive=positive_cond,
negative=negative_cond,
latent=empty_latent,
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=0,
previewer_end=steps
)
print('Fooocus VAE-based swap.')
target_model = final_refiner_unet
if target_model is None:
target_model = final_unet
print('Use base model to refine itself - this may because of developer mode.')
sampled_latent = vae_parse(sampled_latent)
k_sigmas = 1.4
sigmas = calculate_sigmas(sampler=sampler_name,
scheduler=scheduler_name,
model=target_model.model,
steps=steps,
denoise=denoise)[switch:] * k_sigmas
len_sigmas = len(sigmas) - 1
noise_mean = torch.mean(modules.patch.eps_record, dim=1, keepdim=True)
if modules.inpaint_worker.current_task is not None:
modules.inpaint_worker.current_task.swap()
sampled_latent = core.ksampler(
model=target_model,
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=final_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=final_clip),
latent=sampled_latent,
steps=len_sigmas, start_step=0, last_step=len_sigmas, disable_noise=False, force_full_denoise=True,
seed=image_seed+1,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=switch,
previewer_end=steps,
sigmas=sigmas,
noise_mean=noise_mean
)
target_model = final_refiner_vae
if target_model is None:
target_model = final_vae
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
images = core.pytorch_to_numpy(decoded_latent)
modules.patch.eps_record = None
return images