258 lines
6.5 KiB
Python
258 lines
6.5 KiB
Python
import torch
|
|
import numpy as np
|
|
|
|
from PIL import Image, ImageFilter
|
|
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil
|
|
from modules.upscaler import perform_upscale
|
|
|
|
|
|
inpaint_head_model = None
|
|
|
|
|
|
class InpaintHead(torch.nn.Module):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))
|
|
|
|
def __call__(self, x):
|
|
x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
|
|
return torch.nn.functional.conv2d(input=x, weight=self.head)
|
|
|
|
|
|
current_task = None
|
|
|
|
|
|
def box_blur(x, k):
|
|
x = Image.fromarray(x)
|
|
x = x.filter(ImageFilter.BoxBlur(k))
|
|
return np.array(x)
|
|
|
|
|
|
def max33(x):
|
|
x = Image.fromarray(x)
|
|
x = x.filter(ImageFilter.MaxFilter(3))
|
|
return np.array(x)
|
|
|
|
|
|
def morphological_open(x):
|
|
x_int32 = np.zeros_like(x).astype(np.int32)
|
|
x_int32[x > 127] = 256
|
|
for _ in range(32):
|
|
maxed = max33(x_int32) - 8
|
|
x_int32 = np.maximum(maxed, x_int32)
|
|
return x_int32.clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
def up255(x, t=0):
|
|
y = np.zeros_like(x).astype(np.uint8)
|
|
y[x > t] = 255
|
|
return y
|
|
|
|
|
|
def imsave(x, path):
|
|
x = Image.fromarray(x)
|
|
x.save(path)
|
|
|
|
|
|
def regulate_abcd(x, a, b, c, d):
|
|
H, W = x.shape[:2]
|
|
if a < 0:
|
|
a = 0
|
|
if a > H:
|
|
a = H
|
|
if b < 0:
|
|
b = 0
|
|
if b > H:
|
|
b = H
|
|
if c < 0:
|
|
c = 0
|
|
if c > W:
|
|
c = W
|
|
if d < 0:
|
|
d = 0
|
|
if d > W:
|
|
d = W
|
|
return int(a), int(b), int(c), int(d)
|
|
|
|
|
|
def compute_initial_abcd(x):
|
|
indices = np.where(x)
|
|
a = np.min(indices[0])
|
|
b = np.max(indices[0])
|
|
c = np.min(indices[1])
|
|
d = np.max(indices[1])
|
|
abp = (b + a) // 2
|
|
abm = (b - a) // 2
|
|
cdp = (d + c) // 2
|
|
cdm = (d - c) // 2
|
|
l = int(max(abm, cdm) * 1.15)
|
|
a = abp - l
|
|
b = abp + l + 1
|
|
c = cdp - l
|
|
d = cdp + l + 1
|
|
a, b, c, d = regulate_abcd(x, a, b, c, d)
|
|
return a, b, c, d
|
|
|
|
|
|
def solve_abcd(x, a, b, c, d, k):
|
|
k = float(k)
|
|
assert 0.0 <= k <= 1.0
|
|
|
|
H, W = x.shape[:2]
|
|
if k == 1.0:
|
|
return 0, H, 0, W
|
|
while True:
|
|
if b - a >= H * k and d - c >= W * k:
|
|
break
|
|
|
|
add_h = (b - a) < (d - c)
|
|
add_w = not add_h
|
|
|
|
if b - a == H:
|
|
add_w = True
|
|
|
|
if d - c == W:
|
|
add_h = True
|
|
|
|
if add_h:
|
|
a -= 1
|
|
b += 1
|
|
|
|
if add_w:
|
|
c -= 1
|
|
d += 1
|
|
|
|
a, b, c, d = regulate_abcd(x, a, b, c, d)
|
|
return a, b, c, d
|
|
|
|
|
|
def fooocus_fill(image, mask):
|
|
current_image = image.copy()
|
|
raw_image = image.copy()
|
|
area = np.where(mask < 127)
|
|
store = raw_image[area]
|
|
|
|
for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]:
|
|
for _ in range(repeats):
|
|
current_image = box_blur(current_image, k)
|
|
current_image[area] = store
|
|
|
|
return current_image
|
|
|
|
|
|
class InpaintWorker:
|
|
def __init__(self, image, mask, use_fill=True, k=0.618):
|
|
a, b, c, d = compute_initial_abcd(mask > 0)
|
|
a, b, c, d = solve_abcd(mask, a, b, c, d, k=k)
|
|
|
|
# interested area
|
|
self.interested_area = (a, b, c, d)
|
|
self.interested_mask = mask[a:b, c:d]
|
|
self.interested_image = image[a:b, c:d]
|
|
|
|
# super resolution
|
|
if get_image_shape_ceil(self.interested_image) < 1024:
|
|
self.interested_image = perform_upscale(self.interested_image)
|
|
|
|
# resize to make images ready for diffusion
|
|
self.interested_image = set_image_shape_ceil(self.interested_image, 1024)
|
|
self.interested_fill = self.interested_image.copy()
|
|
H, W, C = self.interested_image.shape
|
|
|
|
# process mask
|
|
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)
|
|
|
|
# compute filling
|
|
if use_fill:
|
|
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
|
|
|
|
# soft pixels
|
|
self.mask = morphological_open(mask)
|
|
self.image = image
|
|
|
|
# ending
|
|
self.latent = None
|
|
self.latent_after_swap = None
|
|
self.swapped = False
|
|
self.latent_mask = None
|
|
self.inpaint_head_feature = None
|
|
return
|
|
|
|
def load_latent(self, latent_fill, latent_mask, latent_swap=None):
|
|
self.latent = latent_fill
|
|
self.latent_mask = latent_mask
|
|
self.latent_after_swap = latent_swap
|
|
return
|
|
|
|
def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, model):
|
|
global inpaint_head_model
|
|
|
|
if inpaint_head_model is None:
|
|
inpaint_head_model = InpaintHead()
|
|
sd = torch.load(inpaint_head_model_path, map_location='cpu')
|
|
inpaint_head_model.load_state_dict(sd)
|
|
|
|
feed = torch.cat([
|
|
inpaint_latent_mask,
|
|
model.model.process_latent_in(inpaint_latent)
|
|
], dim=1)
|
|
|
|
inpaint_head_model.to(device=feed.device, dtype=feed.dtype)
|
|
inpaint_head_feature = inpaint_head_model(feed)
|
|
|
|
def input_block_patch(h, transformer_options):
|
|
if transformer_options["block"][1] == 0:
|
|
h = h + inpaint_head_feature.to(h)
|
|
return h
|
|
|
|
m = model.clone()
|
|
m.set_model_input_block_patch(input_block_patch)
|
|
return m
|
|
|
|
def swap(self):
|
|
if self.swapped:
|
|
return
|
|
|
|
if self.latent is None:
|
|
return
|
|
|
|
if self.latent_after_swap is None:
|
|
return
|
|
|
|
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
|
|
self.swapped = True
|
|
return
|
|
|
|
def unswap(self):
|
|
if not self.swapped:
|
|
return
|
|
|
|
if self.latent is None:
|
|
return
|
|
|
|
if self.latent_after_swap is None:
|
|
return
|
|
|
|
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
|
|
self.swapped = False
|
|
return
|
|
|
|
def color_correction(self, img):
|
|
fg = img.astype(np.float32)
|
|
bg = self.image.copy().astype(np.float32)
|
|
w = self.mask[:, :, None].astype(np.float32) / 255.0
|
|
y = fg * w + bg * (1 - w)
|
|
return y.clip(0, 255).astype(np.uint8)
|
|
|
|
def post_process(self, img):
|
|
a, b, c, d = self.interested_area
|
|
content = resample_image(img, d - c, b - a)
|
|
result = self.image.copy()
|
|
result[a:b, c:d] = content
|
|
result = self.color_correction(result)
|
|
return result
|
|
|
|
def visualize_mask_processing(self):
|
|
return [self.interested_fill, self.interested_mask, self.interested_image]
|
|
|