* Fix some potential frozen after model mismatch * Fix crash when cfg=1 when using anime preset * Added some guidelines for troubleshoot the "CUDA kernel errors asynchronously" problem
814 lines
34 KiB
Python
814 lines
34 KiB
Python
import threading
|
||
|
||
|
||
class AsyncTask:
|
||
def __init__(self, args):
|
||
self.args = args
|
||
self.yields = []
|
||
self.results = []
|
||
|
||
|
||
async_tasks = []
|
||
|
||
|
||
def worker():
|
||
global async_tasks
|
||
|
||
import traceback
|
||
import math
|
||
import numpy as np
|
||
import torch
|
||
import time
|
||
import shared
|
||
import random
|
||
import copy
|
||
import modules.default_pipeline as pipeline
|
||
import modules.core as core
|
||
import modules.flags as flags
|
||
import modules.config
|
||
import modules.patch
|
||
import ldm_patched.modules.model_management
|
||
import extras.preprocessors as preprocessors
|
||
import modules.inpaint_worker as inpaint_worker
|
||
import modules.constants as constants
|
||
import modules.advanced_parameters as advanced_parameters
|
||
import extras.ip_adapter as ip_adapter
|
||
import extras.face_crop
|
||
|
||
from modules.sdxl_styles import apply_style, apply_wildcards, fooocus_expansion
|
||
from modules.private_logger import log
|
||
from extras.expansion import safe_str
|
||
from modules.util import remove_empty_str, HWC3, resize_image, \
|
||
get_image_shape_ceil, set_image_shape_ceil, get_shape_ceil, resample_image
|
||
from modules.upscaler import perform_upscale
|
||
|
||
try:
|
||
async_gradio_app = shared.gradio_root
|
||
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
|
||
if async_gradio_app.share:
|
||
flag += f''' or {async_gradio_app.share_url}'''
|
||
print(flag)
|
||
except Exception as e:
|
||
print(e)
|
||
|
||
def progressbar(async_task, number, text):
|
||
print(f'[Fooocus] {text}')
|
||
async_task.yields.append(['preview', (number, text, None)])
|
||
|
||
def yield_result(async_task, imgs, do_not_show_finished_images=False):
|
||
if not isinstance(imgs, list):
|
||
imgs = [imgs]
|
||
|
||
async_task.results = async_task.results + imgs
|
||
|
||
if do_not_show_finished_images:
|
||
return
|
||
|
||
async_task.yields.append(['results', async_task.results])
|
||
return
|
||
|
||
def build_image_wall(async_task):
|
||
if not advanced_parameters.generate_image_grid:
|
||
return
|
||
|
||
results = async_task.results
|
||
|
||
if len(results) < 2:
|
||
return
|
||
|
||
for img in results:
|
||
if not isinstance(img, np.ndarray):
|
||
return
|
||
if img.ndim != 3:
|
||
return
|
||
|
||
H, W, C = results[0].shape
|
||
|
||
for img in results:
|
||
Hn, Wn, Cn = img.shape
|
||
if H != Hn:
|
||
return
|
||
if W != Wn:
|
||
return
|
||
if C != Cn:
|
||
return
|
||
|
||
cols = float(len(results)) ** 0.5
|
||
cols = int(math.ceil(cols))
|
||
rows = float(len(results)) / float(cols)
|
||
rows = int(math.ceil(rows))
|
||
|
||
wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8)
|
||
|
||
for y in range(rows):
|
||
for x in range(cols):
|
||
if y * cols + x < len(results):
|
||
img = results[y * cols + x]
|
||
wall[y * H:y * H + H, x * W:x * W + W, :] = img
|
||
|
||
# must use deep copy otherwise gradio is super laggy. Do not use list.append() .
|
||
async_task.results = async_task.results + [wall]
|
||
return
|
||
|
||
@torch.no_grad()
|
||
@torch.inference_mode()
|
||
def handler(async_task):
|
||
execution_start_time = time.perf_counter()
|
||
|
||
args = async_task.args
|
||
args.reverse()
|
||
|
||
prompt = args.pop()
|
||
negative_prompt = args.pop()
|
||
style_selections = args.pop()
|
||
performance_selection = args.pop()
|
||
aspect_ratios_selection = args.pop()
|
||
image_number = args.pop()
|
||
image_seed = args.pop()
|
||
sharpness = args.pop()
|
||
guidance_scale = args.pop()
|
||
base_model_name = args.pop()
|
||
refiner_model_name = args.pop()
|
||
refiner_switch = args.pop()
|
||
loras = [[str(args.pop()), float(args.pop())] for _ in range(5)]
|
||
input_image_checkbox = args.pop()
|
||
current_tab = args.pop()
|
||
uov_method = args.pop()
|
||
uov_input_image = args.pop()
|
||
outpaint_selections = args.pop()
|
||
inpaint_input_image = args.pop()
|
||
inpaint_additional_prompt = args.pop()
|
||
|
||
cn_tasks = {x: [] for x in flags.ip_list}
|
||
for _ in range(4):
|
||
cn_img = args.pop()
|
||
cn_stop = args.pop()
|
||
cn_weight = args.pop()
|
||
cn_type = args.pop()
|
||
if cn_img is not None:
|
||
cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])
|
||
|
||
outpaint_selections = [o.lower() for o in outpaint_selections]
|
||
base_model_additional_loras = []
|
||
raw_style_selections = copy.deepcopy(style_selections)
|
||
uov_method = uov_method.lower()
|
||
|
||
if fooocus_expansion in style_selections:
|
||
use_expansion = True
|
||
style_selections.remove(fooocus_expansion)
|
||
else:
|
||
use_expansion = False
|
||
|
||
use_style = len(style_selections) > 0
|
||
|
||
if base_model_name == refiner_model_name:
|
||
print(f'Refiner disabled because base model and refiner are same.')
|
||
refiner_model_name = 'None'
|
||
|
||
assert performance_selection in ['Speed', 'Quality', 'Extreme Speed']
|
||
|
||
steps = 30
|
||
|
||
if performance_selection == 'Speed':
|
||
steps = 30
|
||
|
||
if performance_selection == 'Quality':
|
||
steps = 60
|
||
|
||
if performance_selection == 'Extreme Speed':
|
||
print('Enter LCM mode.')
|
||
progressbar(async_task, 1, 'Downloading LCM components ...')
|
||
loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
|
||
|
||
if refiner_model_name != 'None':
|
||
print(f'Refiner disabled in LCM mode.')
|
||
|
||
refiner_model_name = 'None'
|
||
sampler_name = advanced_parameters.sampler_name = 'lcm'
|
||
scheduler_name = advanced_parameters.scheduler_name = 'lcm'
|
||
modules.patch.sharpness = sharpness = 0.0
|
||
cfg_scale = guidance_scale = 1.0
|
||
modules.patch.adaptive_cfg = advanced_parameters.adaptive_cfg = 1.0
|
||
refiner_switch = 1.0
|
||
modules.patch.positive_adm_scale = advanced_parameters.adm_scaler_positive = 1.0
|
||
modules.patch.negative_adm_scale = advanced_parameters.adm_scaler_negative = 1.0
|
||
modules.patch.adm_scaler_end = advanced_parameters.adm_scaler_end = 0.0
|
||
steps = 8
|
||
|
||
modules.patch.adaptive_cfg = advanced_parameters.adaptive_cfg
|
||
print(f'[Parameters] Adaptive CFG = {modules.patch.adaptive_cfg}')
|
||
|
||
modules.patch.sharpness = sharpness
|
||
print(f'[Parameters] Sharpness = {modules.patch.sharpness}')
|
||
|
||
modules.patch.positive_adm_scale = advanced_parameters.adm_scaler_positive
|
||
modules.patch.negative_adm_scale = advanced_parameters.adm_scaler_negative
|
||
modules.patch.adm_scaler_end = advanced_parameters.adm_scaler_end
|
||
print(f'[Parameters] ADM Scale = '
|
||
f'{modules.patch.positive_adm_scale} : '
|
||
f'{modules.patch.negative_adm_scale} : '
|
||
f'{modules.patch.adm_scaler_end}')
|
||
|
||
cfg_scale = float(guidance_scale)
|
||
print(f'[Parameters] CFG = {cfg_scale}')
|
||
|
||
initial_latent = None
|
||
denoising_strength = 1.0
|
||
tiled = False
|
||
|
||
width, height = aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
|
||
width, height = int(width), int(height)
|
||
|
||
skip_prompt_processing = False
|
||
refiner_swap_method = advanced_parameters.refiner_swap_method
|
||
|
||
inpaint_worker.current_task = None
|
||
inpaint_parameterized = advanced_parameters.inpaint_engine != 'None'
|
||
inpaint_image = None
|
||
inpaint_mask = None
|
||
inpaint_head_model_path = None
|
||
|
||
use_synthetic_refiner = False
|
||
|
||
controlnet_canny_path = None
|
||
controlnet_cpds_path = None
|
||
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None
|
||
|
||
seed = int(image_seed)
|
||
print(f'[Parameters] Seed = {seed}')
|
||
|
||
sampler_name = advanced_parameters.sampler_name
|
||
scheduler_name = advanced_parameters.scheduler_name
|
||
|
||
goals = []
|
||
tasks = []
|
||
|
||
if input_image_checkbox:
|
||
if (current_tab == 'uov' or (
|
||
current_tab == 'ip' and advanced_parameters.mixing_image_prompt_and_vary_upscale)) \
|
||
and uov_method != flags.disabled and uov_input_image is not None:
|
||
uov_input_image = HWC3(uov_input_image)
|
||
if 'vary' in uov_method:
|
||
goals.append('vary')
|
||
elif 'upscale' in uov_method:
|
||
goals.append('upscale')
|
||
if 'fast' in uov_method:
|
||
skip_prompt_processing = True
|
||
else:
|
||
steps = 18
|
||
|
||
if performance_selection == 'Speed':
|
||
steps = 18
|
||
|
||
if performance_selection == 'Quality':
|
||
steps = 36
|
||
|
||
if performance_selection == 'Extreme Speed':
|
||
steps = 8
|
||
|
||
progressbar(async_task, 1, 'Downloading upscale models ...')
|
||
modules.config.downloading_upscale_model()
|
||
if (current_tab == 'inpaint' or (
|
||
current_tab == 'ip' and advanced_parameters.mixing_image_prompt_and_inpaint)) \
|
||
and isinstance(inpaint_input_image, dict):
|
||
inpaint_image = inpaint_input_image['image']
|
||
inpaint_mask = inpaint_input_image['mask'][:, :, 0]
|
||
inpaint_image = HWC3(inpaint_image)
|
||
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
|
||
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
|
||
if inpaint_parameterized:
|
||
progressbar(async_task, 1, 'Downloading inpainter ...')
|
||
modules.config.downloading_upscale_model()
|
||
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
|
||
advanced_parameters.inpaint_engine)
|
||
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
|
||
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
|
||
if refiner_model_name == 'None':
|
||
use_synthetic_refiner = True
|
||
refiner_switch = 0.5
|
||
else:
|
||
inpaint_head_model_path, inpaint_patch_model_path = None, None
|
||
print(f'[Inpaint] Parameterized inpaint is disabled.')
|
||
if inpaint_additional_prompt != '':
|
||
if prompt == '':
|
||
prompt = inpaint_additional_prompt
|
||
else:
|
||
prompt = inpaint_additional_prompt + '\n' + prompt
|
||
goals.append('inpaint')
|
||
if current_tab == 'ip' or \
|
||
advanced_parameters.mixing_image_prompt_and_inpaint or \
|
||
advanced_parameters.mixing_image_prompt_and_vary_upscale:
|
||
goals.append('cn')
|
||
progressbar(async_task, 1, 'Downloading control models ...')
|
||
if len(cn_tasks[flags.cn_canny]) > 0:
|
||
controlnet_canny_path = modules.config.downloading_controlnet_canny()
|
||
if len(cn_tasks[flags.cn_cpds]) > 0:
|
||
controlnet_cpds_path = modules.config.downloading_controlnet_cpds()
|
||
if len(cn_tasks[flags.cn_ip]) > 0:
|
||
clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip')
|
||
if len(cn_tasks[flags.cn_ip_face]) > 0:
|
||
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
|
||
'face')
|
||
progressbar(async_task, 1, 'Loading control models ...')
|
||
|
||
# Load or unload CNs
|
||
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
|
||
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
|
||
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path)
|
||
|
||
switch = int(round(steps * refiner_switch))
|
||
|
||
if advanced_parameters.overwrite_step > 0:
|
||
steps = advanced_parameters.overwrite_step
|
||
|
||
if advanced_parameters.overwrite_switch > 0:
|
||
switch = advanced_parameters.overwrite_switch
|
||
|
||
if advanced_parameters.overwrite_width > 0:
|
||
width = advanced_parameters.overwrite_width
|
||
|
||
if advanced_parameters.overwrite_height > 0:
|
||
height = advanced_parameters.overwrite_height
|
||
|
||
print(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}')
|
||
print(f'[Parameters] Steps = {steps} - {switch}')
|
||
|
||
progressbar(async_task, 1, 'Initializing ...')
|
||
|
||
if not skip_prompt_processing:
|
||
|
||
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')
|
||
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='')
|
||
|
||
prompt = prompts[0]
|
||
negative_prompt = negative_prompts[0]
|
||
|
||
if prompt == '':
|
||
# disable expansion when empty since it is not meaningful and influences image prompt
|
||
use_expansion = False
|
||
|
||
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
|
||
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
|
||
|
||
progressbar(async_task, 3, 'Loading models ...')
|
||
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name,
|
||
loras=loras, base_model_additional_loras=base_model_additional_loras,
|
||
use_synthetic_refiner=use_synthetic_refiner)
|
||
|
||
progressbar(async_task, 3, 'Processing prompts ...')
|
||
tasks = []
|
||
for i in range(image_number):
|
||
task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not
|
||
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future
|
||
|
||
task_prompt = apply_wildcards(prompt, task_rng)
|
||
task_negative_prompt = apply_wildcards(negative_prompt, task_rng)
|
||
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_positive_prompts]
|
||
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_negative_prompts]
|
||
|
||
positive_basic_workloads = []
|
||
negative_basic_workloads = []
|
||
|
||
if use_style:
|
||
for s in style_selections:
|
||
p, n = apply_style(s, positive=task_prompt)
|
||
positive_basic_workloads = positive_basic_workloads + p
|
||
negative_basic_workloads = negative_basic_workloads + n
|
||
else:
|
||
positive_basic_workloads.append(task_prompt)
|
||
|
||
negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative.
|
||
|
||
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts
|
||
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts
|
||
|
||
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
|
||
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt)
|
||
|
||
tasks.append(dict(
|
||
task_seed=task_seed,
|
||
task_prompt=task_prompt,
|
||
task_negative_prompt=task_negative_prompt,
|
||
positive=positive_basic_workloads,
|
||
negative=negative_basic_workloads,
|
||
expansion='',
|
||
c=None,
|
||
uc=None,
|
||
positive_top_k=len(positive_basic_workloads),
|
||
negative_top_k=len(negative_basic_workloads),
|
||
log_positive_prompt='; '.join([task_prompt] + task_extra_positive_prompts),
|
||
log_negative_prompt='; '.join([task_negative_prompt] + task_extra_negative_prompts),
|
||
))
|
||
|
||
if use_expansion:
|
||
for i, t in enumerate(tasks):
|
||
progressbar(async_task, 5, f'Preparing Fooocus text #{i + 1} ...')
|
||
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
|
||
print(f'[Prompt Expansion] {expansion}')
|
||
t['expansion'] = expansion
|
||
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
|
||
|
||
for i, t in enumerate(tasks):
|
||
progressbar(async_task, 7, f'Encoding positive #{i + 1} ...')
|
||
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
|
||
|
||
for i, t in enumerate(tasks):
|
||
if abs(float(cfg_scale) - 1.0) < 1e-4:
|
||
t['uc'] = pipeline.clone_cond(t['c'])
|
||
else:
|
||
progressbar(async_task, 10, f'Encoding negative #{i + 1} ...')
|
||
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
|
||
|
||
if len(goals) > 0:
|
||
progressbar(async_task, 13, 'Image processing ...')
|
||
|
||
if 'vary' in goals:
|
||
if 'subtle' in uov_method:
|
||
denoising_strength = 0.5
|
||
if 'strong' in uov_method:
|
||
denoising_strength = 0.85
|
||
if advanced_parameters.overwrite_vary_strength > 0:
|
||
denoising_strength = advanced_parameters.overwrite_vary_strength
|
||
|
||
shape_ceil = get_image_shape_ceil(uov_input_image)
|
||
if shape_ceil < 1024:
|
||
print(f'[Vary] Image is resized because it is too small.')
|
||
shape_ceil = 1024
|
||
elif shape_ceil > 2048:
|
||
print(f'[Vary] Image is resized because it is too big.')
|
||
shape_ceil = 2048
|
||
|
||
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
|
||
|
||
initial_pixels = core.numpy_to_pytorch(uov_input_image)
|
||
progressbar(async_task, 13, 'VAE encoding ...')
|
||
|
||
candidate_vae, _ = pipeline.get_candidate_vae(
|
||
steps=steps,
|
||
switch=switch,
|
||
denoise=denoising_strength,
|
||
refiner_swap_method=refiner_swap_method
|
||
)
|
||
|
||
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
|
||
B, C, H, W = initial_latent['samples'].shape
|
||
width = W * 8
|
||
height = H * 8
|
||
print(f'Final resolution is {str((height, width))}.')
|
||
|
||
if 'upscale' in goals:
|
||
H, W, C = uov_input_image.shape
|
||
progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...')
|
||
uov_input_image = perform_upscale(uov_input_image)
|
||
print(f'Image upscaled.')
|
||
|
||
if '1.5x' in uov_method:
|
||
f = 1.5
|
||
elif '2x' in uov_method:
|
||
f = 2.0
|
||
else:
|
||
f = 1.0
|
||
|
||
shape_ceil = get_shape_ceil(H * f, W * f)
|
||
|
||
if shape_ceil < 1024:
|
||
print(f'[Upscale] Image is resized because it is too small.')
|
||
uov_input_image = set_image_shape_ceil(uov_input_image, 1024)
|
||
shape_ceil = 1024
|
||
else:
|
||
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f)
|
||
|
||
image_is_super_large = shape_ceil > 2800
|
||
|
||
if 'fast' in uov_method:
|
||
direct_return = True
|
||
elif image_is_super_large:
|
||
print('Image is too large. Directly returned the SR image. '
|
||
'Usually directly return SR image at 4K resolution '
|
||
'yields better results than SDXL diffusion.')
|
||
direct_return = True
|
||
else:
|
||
direct_return = False
|
||
|
||
if direct_return:
|
||
d = [('Upscale (Fast)', '2x')]
|
||
log(uov_input_image, d, single_line_number=1)
|
||
yield_result(async_task, uov_input_image, do_not_show_finished_images=True)
|
||
return
|
||
|
||
tiled = True
|
||
denoising_strength = 0.382
|
||
|
||
if advanced_parameters.overwrite_upscale_strength > 0:
|
||
denoising_strength = advanced_parameters.overwrite_upscale_strength
|
||
|
||
initial_pixels = core.numpy_to_pytorch(uov_input_image)
|
||
progressbar(async_task, 13, 'VAE encoding ...')
|
||
|
||
candidate_vae, _ = pipeline.get_candidate_vae(
|
||
steps=steps,
|
||
switch=switch,
|
||
denoise=denoising_strength,
|
||
refiner_swap_method=refiner_swap_method
|
||
)
|
||
|
||
initial_latent = core.encode_vae(
|
||
vae=candidate_vae,
|
||
pixels=initial_pixels, tiled=True)
|
||
B, C, H, W = initial_latent['samples'].shape
|
||
width = W * 8
|
||
height = H * 8
|
||
print(f'Final resolution is {str((height, width))}.')
|
||
|
||
if 'inpaint' in goals:
|
||
if len(outpaint_selections) > 0:
|
||
H, W, C = inpaint_image.shape
|
||
if 'top' in outpaint_selections:
|
||
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
|
||
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
|
||
constant_values=255)
|
||
if 'bottom' in outpaint_selections:
|
||
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
|
||
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
|
||
constant_values=255)
|
||
|
||
H, W, C = inpaint_image.shape
|
||
if 'left' in outpaint_selections:
|
||
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(H * 0.3), 0], [0, 0]], mode='edge')
|
||
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(H * 0.3), 0]], mode='constant',
|
||
constant_values=255)
|
||
if 'right' in outpaint_selections:
|
||
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(H * 0.3)], [0, 0]], mode='edge')
|
||
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(H * 0.3)]], mode='constant',
|
||
constant_values=255)
|
||
|
||
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
|
||
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
|
||
advanced_parameters.inpaint_strength = 1.0
|
||
advanced_parameters.inpaint_respective_field = 1.0
|
||
|
||
denoising_strength = advanced_parameters.inpaint_strength
|
||
|
||
inpaint_worker.current_task = inpaint_worker.InpaintWorker(
|
||
image=inpaint_image,
|
||
mask=inpaint_mask,
|
||
use_fill=denoising_strength > 0.99,
|
||
k=advanced_parameters.inpaint_respective_field
|
||
)
|
||
|
||
if advanced_parameters.debugging_inpaint_preprocessor:
|
||
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(),
|
||
do_not_show_finished_images=True)
|
||
return
|
||
|
||
progressbar(async_task, 13, 'VAE Inpaint encoding ...')
|
||
|
||
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
|
||
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
|
||
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
|
||
|
||
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
|
||
steps=steps,
|
||
switch=switch,
|
||
denoise=denoising_strength,
|
||
refiner_swap_method=refiner_swap_method
|
||
)
|
||
|
||
latent_inpaint, latent_mask = core.encode_vae_inpaint(
|
||
mask=inpaint_pixel_mask,
|
||
vae=candidate_vae,
|
||
pixels=inpaint_pixel_image)
|
||
|
||
latent_swap = None
|
||
if candidate_vae_swap is not None:
|
||
progressbar(async_task, 13, 'VAE SD15 encoding ...')
|
||
latent_swap = core.encode_vae(
|
||
vae=candidate_vae_swap,
|
||
pixels=inpaint_pixel_fill)['samples']
|
||
|
||
progressbar(async_task, 13, 'VAE encoding ...')
|
||
latent_fill = core.encode_vae(
|
||
vae=candidate_vae,
|
||
pixels=inpaint_pixel_fill)['samples']
|
||
|
||
inpaint_worker.current_task.load_latent(
|
||
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)
|
||
|
||
if inpaint_parameterized:
|
||
pipeline.final_unet = inpaint_worker.current_task.patch(
|
||
inpaint_head_model_path=inpaint_head_model_path,
|
||
inpaint_latent=latent_inpaint,
|
||
inpaint_latent_mask=latent_mask,
|
||
model=pipeline.final_unet
|
||
)
|
||
|
||
if not advanced_parameters.inpaint_disable_initial_latent:
|
||
initial_latent = {'samples': latent_fill}
|
||
|
||
B, C, H, W = latent_fill.shape
|
||
height, width = H * 8, W * 8
|
||
final_height, final_width = inpaint_worker.current_task.image.shape[:2]
|
||
print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.')
|
||
|
||
if 'cn' in goals:
|
||
for task in cn_tasks[flags.cn_canny]:
|
||
cn_img, cn_stop, cn_weight = task
|
||
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
|
||
|
||
if not advanced_parameters.skipping_cn_preprocessor:
|
||
cn_img = preprocessors.canny_pyramid(cn_img)
|
||
|
||
cn_img = HWC3(cn_img)
|
||
task[0] = core.numpy_to_pytorch(cn_img)
|
||
if advanced_parameters.debugging_cn_preprocessor:
|
||
yield_result(async_task, cn_img, do_not_show_finished_images=True)
|
||
return
|
||
for task in cn_tasks[flags.cn_cpds]:
|
||
cn_img, cn_stop, cn_weight = task
|
||
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
|
||
|
||
if not advanced_parameters.skipping_cn_preprocessor:
|
||
cn_img = preprocessors.cpds(cn_img)
|
||
|
||
cn_img = HWC3(cn_img)
|
||
task[0] = core.numpy_to_pytorch(cn_img)
|
||
if advanced_parameters.debugging_cn_preprocessor:
|
||
yield_result(async_task, cn_img, do_not_show_finished_images=True)
|
||
return
|
||
for task in cn_tasks[flags.cn_ip]:
|
||
cn_img, cn_stop, cn_weight = task
|
||
cn_img = HWC3(cn_img)
|
||
|
||
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
|
||
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
|
||
|
||
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
|
||
if advanced_parameters.debugging_cn_preprocessor:
|
||
yield_result(async_task, cn_img, do_not_show_finished_images=True)
|
||
return
|
||
for task in cn_tasks[flags.cn_ip_face]:
|
||
cn_img, cn_stop, cn_weight = task
|
||
cn_img = HWC3(cn_img)
|
||
|
||
if not advanced_parameters.skipping_cn_preprocessor:
|
||
cn_img = extras.face_crop.crop_image(cn_img)
|
||
|
||
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
|
||
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
|
||
|
||
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
|
||
if advanced_parameters.debugging_cn_preprocessor:
|
||
yield_result(async_task, cn_img, do_not_show_finished_images=True)
|
||
return
|
||
|
||
all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face]
|
||
|
||
if len(all_ip_tasks) > 0:
|
||
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks)
|
||
|
||
if advanced_parameters.freeu_enabled:
|
||
print(f'FreeU is enabled!')
|
||
pipeline.final_unet = core.apply_freeu(
|
||
pipeline.final_unet,
|
||
advanced_parameters.freeu_b1,
|
||
advanced_parameters.freeu_b2,
|
||
advanced_parameters.freeu_s1,
|
||
advanced_parameters.freeu_s2
|
||
)
|
||
|
||
all_steps = steps * image_number
|
||
|
||
print(f'[Parameters] Denoising Strength = {denoising_strength}')
|
||
|
||
if isinstance(initial_latent, dict) and 'samples' in initial_latent:
|
||
log_shape = initial_latent['samples'].shape
|
||
else:
|
||
log_shape = f'Image Space {(height, width)}'
|
||
|
||
print(f'[Parameters] Initial Latent shape: {log_shape}')
|
||
|
||
preparation_time = time.perf_counter() - execution_start_time
|
||
print(f'Preparation time: {preparation_time:.2f} seconds')
|
||
|
||
final_sampler_name = sampler_name
|
||
final_scheduler_name = scheduler_name
|
||
|
||
if scheduler_name == 'lcm':
|
||
final_scheduler_name = 'sgm_uniform'
|
||
if pipeline.final_unet is not None:
|
||
pipeline.final_unet = core.opModelSamplingDiscrete.patch(
|
||
pipeline.final_unet,
|
||
sampling='lcm',
|
||
zsnr=False)[0]
|
||
if pipeline.final_refiner_unet is not None:
|
||
pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch(
|
||
pipeline.final_refiner_unet,
|
||
sampling='lcm',
|
||
zsnr=False)[0]
|
||
print('Using lcm scheduler.')
|
||
|
||
async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)])
|
||
|
||
def callback(step, x0, x, total_steps, y):
|
||
done_steps = current_task_id * steps + step
|
||
async_task.yields.append(['preview', (
|
||
int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
|
||
f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling',
|
||
y)])
|
||
|
||
for current_task_id, task in enumerate(tasks):
|
||
execution_start_time = time.perf_counter()
|
||
|
||
try:
|
||
positive_cond, negative_cond = task['c'], task['uc']
|
||
|
||
if 'cn' in goals:
|
||
for cn_flag, cn_path in [
|
||
(flags.cn_canny, controlnet_canny_path),
|
||
(flags.cn_cpds, controlnet_cpds_path)
|
||
]:
|
||
for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]:
|
||
positive_cond, negative_cond = core.apply_controlnet(
|
||
positive_cond, negative_cond,
|
||
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)
|
||
|
||
imgs = pipeline.process_diffusion(
|
||
positive_cond=positive_cond,
|
||
negative_cond=negative_cond,
|
||
steps=steps,
|
||
switch=switch,
|
||
width=width,
|
||
height=height,
|
||
image_seed=task['task_seed'],
|
||
callback=callback,
|
||
sampler_name=final_sampler_name,
|
||
scheduler_name=final_scheduler_name,
|
||
latent=initial_latent,
|
||
denoise=denoising_strength,
|
||
tiled=tiled,
|
||
cfg_scale=cfg_scale,
|
||
refiner_swap_method=refiner_swap_method
|
||
)
|
||
|
||
del task['c'], task['uc'], positive_cond, negative_cond # Save memory
|
||
|
||
if inpaint_worker.current_task is not None:
|
||
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
|
||
|
||
for x in imgs:
|
||
d = [
|
||
('Prompt', task['log_positive_prompt']),
|
||
('Negative Prompt', task['log_negative_prompt']),
|
||
('Fooocus V2 Expansion', task['expansion']),
|
||
('Styles', str(raw_style_selections)),
|
||
('Performance', performance_selection),
|
||
('Resolution', str((width, height))),
|
||
('Sharpness', sharpness),
|
||
('Guidance Scale', guidance_scale),
|
||
('ADM Guidance', str((
|
||
modules.patch.positive_adm_scale,
|
||
modules.patch.negative_adm_scale,
|
||
modules.patch.adm_scaler_end))),
|
||
('Base Model', base_model_name),
|
||
('Refiner Model', refiner_model_name),
|
||
('Refiner Switch', refiner_switch),
|
||
('Sampler', sampler_name),
|
||
('Scheduler', scheduler_name),
|
||
('Seed', task['task_seed'])
|
||
]
|
||
for n, w in loras:
|
||
if n != 'None':
|
||
d.append((f'LoRA [{n}] weight', w))
|
||
log(x, d, single_line_number=3)
|
||
|
||
yield_result(async_task, imgs, do_not_show_finished_images=len(tasks) == 1)
|
||
except ldm_patched.modules.model_management.InterruptProcessingException as e:
|
||
if shared.last_stop == 'skip':
|
||
print('User skipped')
|
||
continue
|
||
else:
|
||
print('User stopped')
|
||
break
|
||
|
||
execution_time = time.perf_counter() - execution_start_time
|
||
print(f'Generating and saving time: {execution_time:.2f} seconds')
|
||
|
||
return
|
||
|
||
while True:
|
||
time.sleep(0.01)
|
||
if len(async_tasks) > 0:
|
||
task = async_tasks.pop(0)
|
||
try:
|
||
handler(task)
|
||
build_image_wall(task)
|
||
task.yields.append(['finish', task.results])
|
||
pipeline.prepare_text_encoder(async_call=True)
|
||
except:
|
||
traceback.print_exc()
|
||
task.yields.append(['finish', task.results])
|
||
pass
|
||
|
||
|
||
threading.Thread(target=worker, daemon=True).start()
|