277 lines
10 KiB
Python
277 lines
10 KiB
Python
import torch
|
|
import ldm_patched.modules.clip_vision
|
|
import safetensors.torch as sf
|
|
import ldm_patched.modules.model_management as model_management
|
|
import contextlib
|
|
import ldm_patched.ldm.modules.attention as attention
|
|
|
|
from extras.resampler import Resampler
|
|
from ldm_patched.modules.model_patcher import ModelPatcher
|
|
from modules.core import numpy_to_pytorch
|
|
|
|
|
|
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
|
|
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
|
|
|
|
|
|
def sdp(q, k, v, extra_options):
|
|
return attention.optimized_attention(q, k, v, heads=extra_options["n_heads"], mask=None)
|
|
|
|
|
|
class ImageProjModel(torch.nn.Module):
|
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
|
super().__init__()
|
|
|
|
self.cross_attention_dim = cross_attention_dim
|
|
self.clip_extra_context_tokens = clip_extra_context_tokens
|
|
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
|
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
|
|
|
def forward(self, image_embeds):
|
|
embeds = image_embeds
|
|
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens,
|
|
self.cross_attention_dim)
|
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
|
return clip_extra_context_tokens
|
|
|
|
|
|
class To_KV(torch.nn.Module):
|
|
def __init__(self, cross_attention_dim):
|
|
super().__init__()
|
|
|
|
channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
|
|
self.to_kvs = torch.nn.ModuleList(
|
|
[torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])
|
|
|
|
def load_state_dict_ordered(self, sd):
|
|
state_dict = []
|
|
for i in range(4096):
|
|
for k in ['k', 'v']:
|
|
key = f'{i}.to_{k}_ip.weight'
|
|
if key in sd:
|
|
state_dict.append(sd[key])
|
|
for i, v in enumerate(state_dict):
|
|
self.to_kvs[i].weight = torch.nn.Parameter(v, requires_grad=False)
|
|
|
|
|
|
class IPAdapterModel(torch.nn.Module):
|
|
def __init__(self, state_dict, plus, cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4,
|
|
sdxl_plus=False):
|
|
super().__init__()
|
|
self.plus = plus
|
|
if self.plus:
|
|
self.image_proj_model = Resampler(
|
|
dim=1280 if sdxl_plus else cross_attention_dim,
|
|
depth=4,
|
|
dim_head=64,
|
|
heads=20 if sdxl_plus else 12,
|
|
num_queries=clip_extra_context_tokens,
|
|
embedding_dim=clip_embeddings_dim,
|
|
output_dim=cross_attention_dim,
|
|
ff_mult=4
|
|
)
|
|
else:
|
|
self.image_proj_model = ImageProjModel(
|
|
cross_attention_dim=cross_attention_dim,
|
|
clip_embeddings_dim=clip_embeddings_dim,
|
|
clip_extra_context_tokens=clip_extra_context_tokens
|
|
)
|
|
|
|
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
|
self.ip_layers = To_KV(cross_attention_dim)
|
|
self.ip_layers.load_state_dict_ordered(state_dict["ip_adapter"])
|
|
|
|
|
|
clip_vision: ldm_patched.modules.clip_vision.ClipVisionModel = None
|
|
ip_negative: torch.Tensor = None
|
|
ip_adapters: dict = {}
|
|
|
|
|
|
def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path):
|
|
global clip_vision, ip_negative, ip_adapters
|
|
|
|
if clip_vision is None and isinstance(clip_vision_path, str):
|
|
clip_vision = ldm_patched.modules.clip_vision.load(clip_vision_path)
|
|
|
|
if ip_negative is None and isinstance(ip_negative_path, str):
|
|
ip_negative = sf.load_file(ip_negative_path)['data']
|
|
|
|
if not isinstance(ip_adapter_path, str) or ip_adapter_path in ip_adapters:
|
|
return
|
|
|
|
load_device = model_management.get_torch_device()
|
|
offload_device = torch.device('cpu')
|
|
|
|
use_fp16 = model_management.should_use_fp16(device=load_device)
|
|
ip_state_dict = torch.load(ip_adapter_path, map_location="cpu")
|
|
plus = "latents" in ip_state_dict["image_proj"]
|
|
cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
|
|
sdxl = cross_attention_dim == 2048
|
|
sdxl_plus = sdxl and plus
|
|
|
|
if plus:
|
|
clip_extra_context_tokens = ip_state_dict["image_proj"]["latents"].shape[1]
|
|
clip_embeddings_dim = ip_state_dict["image_proj"]["latents"].shape[2]
|
|
else:
|
|
clip_extra_context_tokens = ip_state_dict["image_proj"]["proj.weight"].shape[0] // cross_attention_dim
|
|
clip_embeddings_dim = None
|
|
|
|
ip_adapter = IPAdapterModel(
|
|
ip_state_dict,
|
|
plus=plus,
|
|
cross_attention_dim=cross_attention_dim,
|
|
clip_embeddings_dim=clip_embeddings_dim,
|
|
clip_extra_context_tokens=clip_extra_context_tokens,
|
|
sdxl_plus=sdxl_plus
|
|
)
|
|
ip_adapter.sdxl = sdxl
|
|
ip_adapter.load_device = load_device
|
|
ip_adapter.offload_device = offload_device
|
|
ip_adapter.dtype = torch.float16 if use_fp16 else torch.float32
|
|
ip_adapter.to(offload_device, dtype=ip_adapter.dtype)
|
|
|
|
image_proj_model = ModelPatcher(model=ip_adapter.image_proj_model, load_device=load_device,
|
|
offload_device=offload_device)
|
|
ip_layers = ModelPatcher(model=ip_adapter.ip_layers, load_device=load_device,
|
|
offload_device=offload_device)
|
|
|
|
ip_adapters[ip_adapter_path] = dict(
|
|
ip_adapter=ip_adapter,
|
|
image_proj_model=image_proj_model,
|
|
ip_layers=ip_layers,
|
|
ip_unconds=None
|
|
)
|
|
|
|
return
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def clip_preprocess(image):
|
|
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
|
|
std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
|
|
image = image.movedim(-1, 1)
|
|
|
|
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
|
|
B, C, H, W = image.shape
|
|
assert H == 224 and W == 224
|
|
|
|
return (image - mean) / std
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def preprocess(img, ip_adapter_path):
|
|
global ip_adapters
|
|
entry = ip_adapters[ip_adapter_path]
|
|
|
|
ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher)
|
|
pixel_values = clip_preprocess(numpy_to_pytorch(img).to(clip_vision.load_device))
|
|
outputs = clip_vision.model(pixel_values=pixel_values, intermediate_output=-2)
|
|
|
|
ip_adapter = entry['ip_adapter']
|
|
ip_layers = entry['ip_layers']
|
|
image_proj_model = entry['image_proj_model']
|
|
ip_unconds = entry['ip_unconds']
|
|
|
|
cond = outputs[1].to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
|
|
|
|
ldm_patched.modules.model_management.load_model_gpu(image_proj_model)
|
|
cond = image_proj_model.model(cond).to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
|
|
|
|
ldm_patched.modules.model_management.load_model_gpu(ip_layers)
|
|
|
|
if ip_unconds is None:
|
|
uncond = ip_negative.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
|
|
ip_unconds = [m(uncond).cpu() for m in ip_layers.model.to_kvs]
|
|
entry['ip_unconds'] = ip_unconds
|
|
|
|
ip_conds = [m(cond).cpu() for m in ip_layers.model.to_kvs]
|
|
|
|
return ip_conds, ip_unconds
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def patch_model(model, tasks):
|
|
new_model = model.clone()
|
|
|
|
def make_attn_patcher(ip_index):
|
|
def patcher(n, context_attn2, value_attn2, extra_options):
|
|
org_dtype = n.dtype
|
|
current_step = float(model.model.diffusion_model.current_step.detach().cpu().numpy()[0])
|
|
cond_or_uncond = extra_options['cond_or_uncond']
|
|
|
|
q = n
|
|
k = [context_attn2]
|
|
v = [value_attn2]
|
|
b, _, _ = q.shape
|
|
|
|
for (cs, ucs), cn_stop, cn_weight in tasks:
|
|
if current_step < cn_stop:
|
|
ip_k_c = cs[ip_index * 2].to(q)
|
|
ip_v_c = cs[ip_index * 2 + 1].to(q)
|
|
ip_k_uc = ucs[ip_index * 2].to(q)
|
|
ip_v_uc = ucs[ip_index * 2 + 1].to(q)
|
|
|
|
ip_k = torch.cat([(ip_k_c, ip_k_uc)[i] for i in cond_or_uncond], dim=0)
|
|
ip_v = torch.cat([(ip_v_c, ip_v_uc)[i] for i in cond_or_uncond], dim=0)
|
|
|
|
# Midjourney's attention formulation of image prompt (non-official reimplementation)
|
|
# Written by Lvmin Zhang at Stanford University, 2023 Dec
|
|
# For non-commercial use only - if you use this in commercial project then
|
|
# probably it has some intellectual property issues.
|
|
# Contact lvminzhang@acm.org if you are not sure.
|
|
|
|
# Below is the sensitive part with potential intellectual property issues.
|
|
|
|
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
|
|
ip_v_offset = ip_v - ip_v_mean
|
|
|
|
B, F, C = ip_k.shape
|
|
channel_penalty = float(C) / 1280.0
|
|
weight = cn_weight * channel_penalty
|
|
|
|
ip_k = ip_k * weight
|
|
ip_v = ip_v_offset + ip_v_mean * weight
|
|
|
|
k.append(ip_k)
|
|
v.append(ip_v)
|
|
|
|
k = torch.cat(k, dim=1)
|
|
v = torch.cat(v, dim=1)
|
|
out = sdp(q, k, v, extra_options)
|
|
|
|
|
|
return out.to(dtype=org_dtype)
|
|
return patcher
|
|
|
|
def set_model_patch_replace(model, number, key):
|
|
to = model.model_options["transformer_options"]
|
|
if "patches_replace" not in to:
|
|
to["patches_replace"] = {}
|
|
if "attn2" not in to["patches_replace"]:
|
|
to["patches_replace"]["attn2"] = {}
|
|
if key not in to["patches_replace"]["attn2"]:
|
|
to["patches_replace"]["attn2"][key] = make_attn_patcher(number)
|
|
|
|
number = 0
|
|
|
|
for id in [4, 5, 7, 8]:
|
|
block_indices = range(2) if id in [4, 5] else range(10)
|
|
for index in block_indices:
|
|
set_model_patch_replace(new_model, number, ("input", id, index))
|
|
number += 1
|
|
|
|
for id in range(6):
|
|
block_indices = range(2) if id in [3, 4, 5] else range(10)
|
|
for index in block_indices:
|
|
set_model_patch_replace(new_model, number, ("output", id, index))
|
|
number += 1
|
|
|
|
for index in range(10):
|
|
set_model_patch_replace(new_model, number, ("middle", 0, index))
|
|
number += 1
|
|
|
|
return new_model
|