68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License)
 | |
| 
 | |
| import torch
 | |
| 
 | |
| 
 | |
| def Fourier_filter(x, threshold, scale):
 | |
|     # FFT
 | |
|     x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
 | |
|     x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
 | |
| 
 | |
|     B, C, H, W = x_freq.shape
 | |
|     mask = torch.ones((B, C, H, W), device=x.device)
 | |
| 
 | |
|     crow, ccol = H // 2, W //2
 | |
|     mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
 | |
|     x_freq = x_freq * mask
 | |
| 
 | |
|     # IFFT
 | |
|     x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
 | |
|     x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
 | |
| 
 | |
|     return x_filtered.to(x.dtype)
 | |
| 
 | |
| 
 | |
| class FreeU:
 | |
|     @classmethod
 | |
|     def INPUT_TYPES(s):
 | |
|         return {"required": { "model": ("MODEL",),
 | |
|                              "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}),
 | |
|                              "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}),
 | |
|                              "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
 | |
|                              "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
 | |
|                               }}
 | |
|     RETURN_TYPES = ("MODEL",)
 | |
|     FUNCTION = "patch"
 | |
| 
 | |
|     CATEGORY = "_for_testing"
 | |
| 
 | |
|     def patch(self, model, b1, b2, s1, s2):
 | |
|         model_channels = model.model.model_config.unet_config["model_channels"]
 | |
|         scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
 | |
|         on_cpu_devices = {}
 | |
| 
 | |
|         def output_block_patch(h, hsp, transformer_options):
 | |
|             scale = scale_dict.get(h.shape[1], None)
 | |
|             if scale is not None:
 | |
|                 h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0]
 | |
|                 if hsp.device not in on_cpu_devices:
 | |
|                     try:
 | |
|                         hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
 | |
|                     except:
 | |
|                         print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
 | |
|                         on_cpu_devices[hsp.device] = True
 | |
|                         hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
 | |
|                 else:
 | |
|                     hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
 | |
| 
 | |
|             return h, hsp
 | |
| 
 | |
|         m = model.clone()
 | |
|         m.set_model_output_block_patch(output_block_patch)
 | |
|         return (m, )
 | |
| 
 | |
| 
 | |
| NODE_CLASS_MAPPINGS = {
 | |
|     "FreeU": FreeU,
 | |
| }
 |