384 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| import math
 | |
| 
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import torch.nn.functional as F
 | |
| 
 | |
| from . import block as B
 | |
| 
 | |
| 
 | |
| class Get_gradient_nopadding(nn.Module):
 | |
|     def __init__(self):
 | |
|         super(Get_gradient_nopadding, self).__init__()
 | |
|         kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]]
 | |
|         kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]]
 | |
|         kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0)
 | |
|         kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0)
 | |
|         self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False)  # type: ignore
 | |
| 
 | |
|         self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False)  # type: ignore
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x_list = []
 | |
|         for i in range(x.shape[1]):
 | |
|             x_i = x[:, i]
 | |
|             x_i_v = F.conv2d(x_i.unsqueeze(1), self.weight_v, padding=1)
 | |
|             x_i_h = F.conv2d(x_i.unsqueeze(1), self.weight_h, padding=1)
 | |
|             x_i = torch.sqrt(torch.pow(x_i_v, 2) + torch.pow(x_i_h, 2) + 1e-6)
 | |
|             x_list.append(x_i)
 | |
| 
 | |
|         x = torch.cat(x_list, dim=1)
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class SPSRNet(nn.Module):
 | |
|     def __init__(
 | |
|         self,
 | |
|         state_dict,
 | |
|         norm=None,
 | |
|         act: str = "leakyrelu",
 | |
|         upsampler: str = "upconv",
 | |
|         mode: B.ConvMode = "CNA",
 | |
|     ):
 | |
|         super(SPSRNet, self).__init__()
 | |
|         self.model_arch = "SPSR"
 | |
|         self.sub_type = "SR"
 | |
| 
 | |
|         self.state = state_dict
 | |
|         self.norm = norm
 | |
|         self.act = act
 | |
|         self.upsampler = upsampler
 | |
|         self.mode = mode
 | |
| 
 | |
|         self.num_blocks = self.get_num_blocks()
 | |
| 
 | |
|         self.in_nc: int = self.state["model.0.weight"].shape[1]
 | |
|         self.out_nc: int = self.state["f_HR_conv1.0.bias"].shape[0]
 | |
| 
 | |
|         self.scale = self.get_scale(4)
 | |
|         self.num_filters: int = self.state["model.0.weight"].shape[0]
 | |
| 
 | |
|         self.supports_fp16 = True
 | |
|         self.supports_bfp16 = True
 | |
|         self.min_size_restriction = None
 | |
| 
 | |
|         n_upscale = int(math.log(self.scale, 2))
 | |
|         if self.scale == 3:
 | |
|             n_upscale = 1
 | |
| 
 | |
|         fea_conv = B.conv_block(
 | |
|             self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
 | |
|         )
 | |
|         rb_blocks = [
 | |
|             B.RRDB(
 | |
|                 self.num_filters,
 | |
|                 kernel_size=3,
 | |
|                 gc=32,
 | |
|                 stride=1,
 | |
|                 bias=True,
 | |
|                 pad_type="zero",
 | |
|                 norm_type=norm,
 | |
|                 act_type=act,
 | |
|                 mode="CNA",
 | |
|             )
 | |
|             for _ in range(self.num_blocks)
 | |
|         ]
 | |
|         LR_conv = B.conv_block(
 | |
|             self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=norm,
 | |
|             act_type=None,
 | |
|             mode=mode,
 | |
|         )
 | |
| 
 | |
|         if upsampler == "upconv":
 | |
|             upsample_block = B.upconv_block
 | |
|         elif upsampler == "pixelshuffle":
 | |
|             upsample_block = B.pixelshuffle_block
 | |
|         else:
 | |
|             raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
 | |
|         if self.scale == 3:
 | |
|             a_upsampler = upsample_block(
 | |
|                 self.num_filters, self.num_filters, 3, act_type=act
 | |
|             )
 | |
|         else:
 | |
|             a_upsampler = [
 | |
|                 upsample_block(self.num_filters, self.num_filters, act_type=act)
 | |
|                 for _ in range(n_upscale)
 | |
|             ]
 | |
|         self.HR_conv0_new = B.conv_block(
 | |
|             self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=act,
 | |
|         )
 | |
|         self.HR_conv1_new = B.conv_block(
 | |
|             self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=None,
 | |
|         )
 | |
| 
 | |
|         self.model = B.sequential(
 | |
|             fea_conv,
 | |
|             B.ShortcutBlockSPSR(B.sequential(*rb_blocks, LR_conv)),
 | |
|             *a_upsampler,
 | |
|             self.HR_conv0_new,
 | |
|         )
 | |
| 
 | |
|         self.get_g_nopadding = Get_gradient_nopadding()
 | |
| 
 | |
|         self.b_fea_conv = B.conv_block(
 | |
|             self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
 | |
|         )
 | |
| 
 | |
|         self.b_concat_1 = B.conv_block(
 | |
|             2 * self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=None,
 | |
|         )
 | |
|         self.b_block_1 = B.RRDB(
 | |
|             self.num_filters * 2,
 | |
|             kernel_size=3,
 | |
|             gc=32,
 | |
|             stride=1,
 | |
|             bias=True,
 | |
|             pad_type="zero",
 | |
|             norm_type=norm,
 | |
|             act_type=act,
 | |
|             mode="CNA",
 | |
|         )
 | |
| 
 | |
|         self.b_concat_2 = B.conv_block(
 | |
|             2 * self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=None,
 | |
|         )
 | |
|         self.b_block_2 = B.RRDB(
 | |
|             self.num_filters * 2,
 | |
|             kernel_size=3,
 | |
|             gc=32,
 | |
|             stride=1,
 | |
|             bias=True,
 | |
|             pad_type="zero",
 | |
|             norm_type=norm,
 | |
|             act_type=act,
 | |
|             mode="CNA",
 | |
|         )
 | |
| 
 | |
|         self.b_concat_3 = B.conv_block(
 | |
|             2 * self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=None,
 | |
|         )
 | |
|         self.b_block_3 = B.RRDB(
 | |
|             self.num_filters * 2,
 | |
|             kernel_size=3,
 | |
|             gc=32,
 | |
|             stride=1,
 | |
|             bias=True,
 | |
|             pad_type="zero",
 | |
|             norm_type=norm,
 | |
|             act_type=act,
 | |
|             mode="CNA",
 | |
|         )
 | |
| 
 | |
|         self.b_concat_4 = B.conv_block(
 | |
|             2 * self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=None,
 | |
|         )
 | |
|         self.b_block_4 = B.RRDB(
 | |
|             self.num_filters * 2,
 | |
|             kernel_size=3,
 | |
|             gc=32,
 | |
|             stride=1,
 | |
|             bias=True,
 | |
|             pad_type="zero",
 | |
|             norm_type=norm,
 | |
|             act_type=act,
 | |
|             mode="CNA",
 | |
|         )
 | |
| 
 | |
|         self.b_LR_conv = B.conv_block(
 | |
|             self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=norm,
 | |
|             act_type=None,
 | |
|             mode=mode,
 | |
|         )
 | |
| 
 | |
|         if upsampler == "upconv":
 | |
|             upsample_block = B.upconv_block
 | |
|         elif upsampler == "pixelshuffle":
 | |
|             upsample_block = B.pixelshuffle_block
 | |
|         else:
 | |
|             raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
 | |
|         if self.scale == 3:
 | |
|             b_upsampler = upsample_block(
 | |
|                 self.num_filters, self.num_filters, 3, act_type=act
 | |
|             )
 | |
|         else:
 | |
|             b_upsampler = [
 | |
|                 upsample_block(self.num_filters, self.num_filters, act_type=act)
 | |
|                 for _ in range(n_upscale)
 | |
|             ]
 | |
| 
 | |
|         b_HR_conv0 = B.conv_block(
 | |
|             self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=act,
 | |
|         )
 | |
|         b_HR_conv1 = B.conv_block(
 | |
|             self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=None,
 | |
|         )
 | |
| 
 | |
|         self.b_module = B.sequential(*b_upsampler, b_HR_conv0, b_HR_conv1)
 | |
| 
 | |
|         self.conv_w = B.conv_block(
 | |
|             self.num_filters, self.out_nc, kernel_size=1, norm_type=None, act_type=None
 | |
|         )
 | |
| 
 | |
|         self.f_concat = B.conv_block(
 | |
|             self.num_filters * 2,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=None,
 | |
|         )
 | |
| 
 | |
|         self.f_block = B.RRDB(
 | |
|             self.num_filters * 2,
 | |
|             kernel_size=3,
 | |
|             gc=32,
 | |
|             stride=1,
 | |
|             bias=True,
 | |
|             pad_type="zero",
 | |
|             norm_type=norm,
 | |
|             act_type=act,
 | |
|             mode="CNA",
 | |
|         )
 | |
| 
 | |
|         self.f_HR_conv0 = B.conv_block(
 | |
|             self.num_filters,
 | |
|             self.num_filters,
 | |
|             kernel_size=3,
 | |
|             norm_type=None,
 | |
|             act_type=act,
 | |
|         )
 | |
|         self.f_HR_conv1 = B.conv_block(
 | |
|             self.num_filters, self.out_nc, kernel_size=3, norm_type=None, act_type=None
 | |
|         )
 | |
| 
 | |
|         self.load_state_dict(self.state, strict=False)
 | |
| 
 | |
|     def get_scale(self, min_part: int = 4) -> int:
 | |
|         n = 0
 | |
|         for part in list(self.state):
 | |
|             parts = part.split(".")
 | |
|             if len(parts) == 3:
 | |
|                 part_num = int(parts[1])
 | |
|                 if part_num > min_part and parts[0] == "model" and parts[2] == "weight":
 | |
|                     n += 1
 | |
|         return 2**n
 | |
| 
 | |
|     def get_num_blocks(self) -> int:
 | |
|         nb = 0
 | |
|         for part in list(self.state):
 | |
|             parts = part.split(".")
 | |
|             n_parts = len(parts)
 | |
|             if n_parts == 5 and parts[2] == "sub":
 | |
|                 nb = int(parts[3])
 | |
|         return nb
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x_grad = self.get_g_nopadding(x)
 | |
|         x = self.model[0](x)
 | |
| 
 | |
|         x, block_list = self.model[1](x)
 | |
| 
 | |
|         x_ori = x
 | |
|         for i in range(5):
 | |
|             x = block_list[i](x)
 | |
|         x_fea1 = x
 | |
| 
 | |
|         for i in range(5):
 | |
|             x = block_list[i + 5](x)
 | |
|         x_fea2 = x
 | |
| 
 | |
|         for i in range(5):
 | |
|             x = block_list[i + 10](x)
 | |
|         x_fea3 = x
 | |
| 
 | |
|         for i in range(5):
 | |
|             x = block_list[i + 15](x)
 | |
|         x_fea4 = x
 | |
| 
 | |
|         x = block_list[20:](x)
 | |
|         # short cut
 | |
|         x = x_ori + x
 | |
|         x = self.model[2:](x)
 | |
|         x = self.HR_conv1_new(x)
 | |
| 
 | |
|         x_b_fea = self.b_fea_conv(x_grad)
 | |
|         x_cat_1 = torch.cat([x_b_fea, x_fea1], dim=1)
 | |
| 
 | |
|         x_cat_1 = self.b_block_1(x_cat_1)
 | |
|         x_cat_1 = self.b_concat_1(x_cat_1)
 | |
| 
 | |
|         x_cat_2 = torch.cat([x_cat_1, x_fea2], dim=1)
 | |
| 
 | |
|         x_cat_2 = self.b_block_2(x_cat_2)
 | |
|         x_cat_2 = self.b_concat_2(x_cat_2)
 | |
| 
 | |
|         x_cat_3 = torch.cat([x_cat_2, x_fea3], dim=1)
 | |
| 
 | |
|         x_cat_3 = self.b_block_3(x_cat_3)
 | |
|         x_cat_3 = self.b_concat_3(x_cat_3)
 | |
| 
 | |
|         x_cat_4 = torch.cat([x_cat_3, x_fea4], dim=1)
 | |
| 
 | |
|         x_cat_4 = self.b_block_4(x_cat_4)
 | |
|         x_cat_4 = self.b_concat_4(x_cat_4)
 | |
| 
 | |
|         x_cat_4 = self.b_LR_conv(x_cat_4)
 | |
| 
 | |
|         # short cut
 | |
|         x_cat_4 = x_cat_4 + x_b_fea
 | |
|         x_branch = self.b_module(x_cat_4)
 | |
| 
 | |
|         # x_out_branch = self.conv_w(x_branch)
 | |
|         ########
 | |
|         x_branch_d = x_branch
 | |
|         x_f_cat = torch.cat([x_branch_d, x], dim=1)
 | |
|         x_f_cat = self.f_block(x_f_cat)
 | |
|         x_out = self.f_concat(x_f_cat)
 | |
|         x_out = self.f_HR_conv0(x_out)
 | |
|         x_out = self.f_HR_conv1(x_out)
 | |
| 
 | |
|         #########
 | |
|         # return x_out_branch, x_out, x_grad
 | |
|         return x_out
 |