1183 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1183 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # pylint: skip-file
 | |
| import math
 | |
| import re
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import torch.utils.checkpoint as checkpoint
 | |
| from einops import rearrange
 | |
| from einops.layers.torch import Rearrange
 | |
| from torch import Tensor
 | |
| from torch.nn import functional as F
 | |
| 
 | |
| from .timm.drop import DropPath
 | |
| from .timm.weight_init import trunc_normal_
 | |
| 
 | |
| 
 | |
| def img2windows(img, H_sp, W_sp):
 | |
|     """
 | |
|     Input: Image (B, C, H, W)
 | |
|     Output: Window Partition (B', N, C)
 | |
|     """
 | |
|     B, C, H, W = img.shape
 | |
|     img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
 | |
|     img_perm = (
 | |
|         img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)
 | |
|     )
 | |
|     return img_perm
 | |
| 
 | |
| 
 | |
| def windows2img(img_splits_hw, H_sp, W_sp, H, W):
 | |
|     """
 | |
|     Input: Window Partition (B', N, C)
 | |
|     Output: Image (B, H, W, C)
 | |
|     """
 | |
|     B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
 | |
| 
 | |
|     img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
 | |
|     img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
 | |
|     return img
 | |
| 
 | |
| 
 | |
| class SpatialGate(nn.Module):
 | |
|     """Spatial-Gate.
 | |
|     Args:
 | |
|         dim (int): Half of input channels.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, dim):
 | |
|         super().__init__()
 | |
|         self.norm = nn.LayerNorm(dim)
 | |
|         self.conv = nn.Conv2d(
 | |
|             dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
 | |
|         )  # DW Conv
 | |
| 
 | |
|     def forward(self, x, H, W):
 | |
|         # Split
 | |
|         x1, x2 = x.chunk(2, dim=-1)
 | |
|         B, N, C = x.shape
 | |
|         x2 = (
 | |
|             self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W))
 | |
|             .flatten(2)
 | |
|             .transpose(-1, -2)
 | |
|             .contiguous()
 | |
|         )
 | |
| 
 | |
|         return x1 * x2
 | |
| 
 | |
| 
 | |
| class SGFN(nn.Module):
 | |
|     """Spatial-Gate Feed-Forward Network.
 | |
|     Args:
 | |
|         in_features (int): Number of input channels.
 | |
|         hidden_features (int | None): Number of hidden channels. Default: None
 | |
|         out_features (int | None): Number of output channels. Default: None
 | |
|         act_layer (nn.Module): Activation layer. Default: nn.GELU
 | |
|         drop (float): Dropout rate. Default: 0.0
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         in_features,
 | |
|         hidden_features=None,
 | |
|         out_features=None,
 | |
|         act_layer=nn.GELU,
 | |
|         drop=0.0,
 | |
|     ):
 | |
|         super().__init__()
 | |
|         out_features = out_features or in_features
 | |
|         hidden_features = hidden_features or in_features
 | |
|         self.fc1 = nn.Linear(in_features, hidden_features)
 | |
|         self.act = act_layer()
 | |
|         self.sg = SpatialGate(hidden_features // 2)
 | |
|         self.fc2 = nn.Linear(hidden_features // 2, out_features)
 | |
|         self.drop = nn.Dropout(drop)
 | |
| 
 | |
|     def forward(self, x, H, W):
 | |
|         """
 | |
|         Input: x: (B, H*W, C), H, W
 | |
|         Output: x: (B, H*W, C)
 | |
|         """
 | |
|         x = self.fc1(x)
 | |
|         x = self.act(x)
 | |
|         x = self.drop(x)
 | |
| 
 | |
|         x = self.sg(x, H, W)
 | |
|         x = self.drop(x)
 | |
| 
 | |
|         x = self.fc2(x)
 | |
|         x = self.drop(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class DynamicPosBias(nn.Module):
 | |
|     # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
 | |
|     """Dynamic Relative Position Bias.
 | |
|     Args:
 | |
|         dim (int): Number of input channels.
 | |
|         num_heads (int): Number of attention heads.
 | |
|         residual (bool):  If True, use residual strage to connect conv.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, dim, num_heads, residual):
 | |
|         super().__init__()
 | |
|         self.residual = residual
 | |
|         self.num_heads = num_heads
 | |
|         self.pos_dim = dim // 4
 | |
|         self.pos_proj = nn.Linear(2, self.pos_dim)
 | |
|         self.pos1 = nn.Sequential(
 | |
|             nn.LayerNorm(self.pos_dim),
 | |
|             nn.ReLU(inplace=True),
 | |
|             nn.Linear(self.pos_dim, self.pos_dim),
 | |
|         )
 | |
|         self.pos2 = nn.Sequential(
 | |
|             nn.LayerNorm(self.pos_dim),
 | |
|             nn.ReLU(inplace=True),
 | |
|             nn.Linear(self.pos_dim, self.pos_dim),
 | |
|         )
 | |
|         self.pos3 = nn.Sequential(
 | |
|             nn.LayerNorm(self.pos_dim),
 | |
|             nn.ReLU(inplace=True),
 | |
|             nn.Linear(self.pos_dim, self.num_heads),
 | |
|         )
 | |
| 
 | |
|     def forward(self, biases):
 | |
|         if self.residual:
 | |
|             pos = self.pos_proj(biases)  # 2Gh-1 * 2Gw-1, heads
 | |
|             pos = pos + self.pos1(pos)
 | |
|             pos = pos + self.pos2(pos)
 | |
|             pos = self.pos3(pos)
 | |
|         else:
 | |
|             pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
 | |
|         return pos
 | |
| 
 | |
| 
 | |
| class Spatial_Attention(nn.Module):
 | |
|     """Spatial Window Self-Attention.
 | |
|     It supports rectangle window (containing square window).
 | |
|     Args:
 | |
|         dim (int): Number of input channels.
 | |
|         idx (int): The indentix of window. (0/1)
 | |
|         split_size (tuple(int)): Height and Width of spatial window.
 | |
|         dim_out (int | None): The dimension of the attention output. Default: None
 | |
|         num_heads (int): Number of attention heads. Default: 6
 | |
|         attn_drop (float): Dropout ratio of attention weight. Default: 0.0
 | |
|         proj_drop (float): Dropout ratio of output. Default: 0.0
 | |
|         qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
 | |
|         position_bias (bool): The dynamic relative position bias. Default: True
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         dim,
 | |
|         idx,
 | |
|         split_size=[8, 8],
 | |
|         dim_out=None,
 | |
|         num_heads=6,
 | |
|         attn_drop=0.0,
 | |
|         proj_drop=0.0,
 | |
|         qk_scale=None,
 | |
|         position_bias=True,
 | |
|     ):
 | |
|         super().__init__()
 | |
|         self.dim = dim
 | |
|         self.dim_out = dim_out or dim
 | |
|         self.split_size = split_size
 | |
|         self.num_heads = num_heads
 | |
|         self.idx = idx
 | |
|         self.position_bias = position_bias
 | |
| 
 | |
|         head_dim = dim // num_heads
 | |
|         self.scale = qk_scale or head_dim**-0.5
 | |
| 
 | |
|         if idx == 0:
 | |
|             H_sp, W_sp = self.split_size[0], self.split_size[1]
 | |
|         elif idx == 1:
 | |
|             W_sp, H_sp = self.split_size[0], self.split_size[1]
 | |
|         else:
 | |
|             print("ERROR MODE", idx)
 | |
|             exit(0)
 | |
|         self.H_sp = H_sp
 | |
|         self.W_sp = W_sp
 | |
| 
 | |
|         if self.position_bias:
 | |
|             self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
 | |
|             # generate mother-set
 | |
|             position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
 | |
|             position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
 | |
|             biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
 | |
|             biases = biases.flatten(1).transpose(0, 1).contiguous().float()
 | |
|             self.register_buffer("rpe_biases", biases)
 | |
| 
 | |
|             # get pair-wise relative position index for each token inside the window
 | |
|             coords_h = torch.arange(self.H_sp)
 | |
|             coords_w = torch.arange(self.W_sp)
 | |
|             coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
 | |
|             coords_flatten = torch.flatten(coords, 1)
 | |
|             relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
 | |
|             relative_coords = relative_coords.permute(1, 2, 0).contiguous()
 | |
|             relative_coords[:, :, 0] += self.H_sp - 1
 | |
|             relative_coords[:, :, 1] += self.W_sp - 1
 | |
|             relative_coords[:, :, 0] *= 2 * self.W_sp - 1
 | |
|             relative_position_index = relative_coords.sum(-1)
 | |
|             self.register_buffer("relative_position_index", relative_position_index)
 | |
| 
 | |
|         self.attn_drop = nn.Dropout(attn_drop)
 | |
| 
 | |
|     def im2win(self, x, H, W):
 | |
|         B, N, C = x.shape
 | |
|         x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
 | |
|         x = img2windows(x, self.H_sp, self.W_sp)
 | |
|         x = (
 | |
|             x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads)
 | |
|             .permute(0, 2, 1, 3)
 | |
|             .contiguous()
 | |
|         )
 | |
|         return x
 | |
| 
 | |
|     def forward(self, qkv, H, W, mask=None):
 | |
|         """
 | |
|         Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
 | |
|         Output: x (B, H, W, C)
 | |
|         """
 | |
|         q, k, v = qkv[0], qkv[1], qkv[2]
 | |
| 
 | |
|         B, L, C = q.shape
 | |
|         assert L == H * W, "flatten img_tokens has wrong size"
 | |
| 
 | |
|         # partition the q,k,v, image to window
 | |
|         q = self.im2win(q, H, W)
 | |
|         k = self.im2win(k, H, W)
 | |
|         v = self.im2win(v, H, W)
 | |
| 
 | |
|         q = q * self.scale
 | |
|         attn = q @ k.transpose(-2, -1)  # B head N C @ B head C N --> B head N N
 | |
| 
 | |
|         # calculate drpe
 | |
|         if self.position_bias:
 | |
|             pos = self.pos(self.rpe_biases)
 | |
|             # select position bias
 | |
|             relative_position_bias = pos[self.relative_position_index.view(-1)].view(
 | |
|                 self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1
 | |
|             )
 | |
|             relative_position_bias = relative_position_bias.permute(
 | |
|                 2, 0, 1
 | |
|             ).contiguous()
 | |
|             attn = attn + relative_position_bias.unsqueeze(0)
 | |
| 
 | |
|         N = attn.shape[3]
 | |
| 
 | |
|         # use mask for shift window
 | |
|         if mask is not None:
 | |
|             nW = mask.shape[0]
 | |
|             attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(
 | |
|                 0
 | |
|             )
 | |
|             attn = attn.view(-1, self.num_heads, N, N)
 | |
| 
 | |
|         attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
 | |
|         attn = self.attn_drop(attn)
 | |
| 
 | |
|         x = attn @ v
 | |
|         x = x.transpose(1, 2).reshape(
 | |
|             -1, self.H_sp * self.W_sp, C
 | |
|         )  # B head N N @ B head N C
 | |
| 
 | |
|         # merge the window, window to image
 | |
|         x = windows2img(x, self.H_sp, self.W_sp, H, W)  # B H' W' C
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class Adaptive_Spatial_Attention(nn.Module):
 | |
|     # The implementation builds on CAT code https://github.com/Zhengchen1999/CAT
 | |
|     """Adaptive Spatial Self-Attention
 | |
|     Args:
 | |
|         dim (int): Number of input channels.
 | |
|         num_heads (int): Number of attention heads. Default: 6
 | |
|         split_size (tuple(int)): Height and Width of spatial window.
 | |
|         shift_size (tuple(int)): Shift size for spatial window.
 | |
|         qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
 | |
|         qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
 | |
|         drop (float): Dropout rate. Default: 0.0
 | |
|         attn_drop (float): Attention dropout rate. Default: 0.0
 | |
|         rg_idx (int): The indentix of Residual Group (RG)
 | |
|         b_idx (int): The indentix of Block in each RG
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         dim,
 | |
|         num_heads,
 | |
|         reso=64,
 | |
|         split_size=[8, 8],
 | |
|         shift_size=[1, 2],
 | |
|         qkv_bias=False,
 | |
|         qk_scale=None,
 | |
|         drop=0.0,
 | |
|         attn_drop=0.0,
 | |
|         rg_idx=0,
 | |
|         b_idx=0,
 | |
|     ):
 | |
|         super().__init__()
 | |
|         self.dim = dim
 | |
|         self.num_heads = num_heads
 | |
|         self.split_size = split_size
 | |
|         self.shift_size = shift_size
 | |
|         self.b_idx = b_idx
 | |
|         self.rg_idx = rg_idx
 | |
|         self.patches_resolution = reso
 | |
|         self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
 | |
| 
 | |
|         assert (
 | |
|             0 <= self.shift_size[0] < self.split_size[0]
 | |
|         ), "shift_size must in 0-split_size0"
 | |
|         assert (
 | |
|             0 <= self.shift_size[1] < self.split_size[1]
 | |
|         ), "shift_size must in 0-split_size1"
 | |
| 
 | |
|         self.branch_num = 2
 | |
| 
 | |
|         self.proj = nn.Linear(dim, dim)
 | |
|         self.proj_drop = nn.Dropout(drop)
 | |
| 
 | |
|         self.attns = nn.ModuleList(
 | |
|             [
 | |
|                 Spatial_Attention(
 | |
|                     dim // 2,
 | |
|                     idx=i,
 | |
|                     split_size=split_size,
 | |
|                     num_heads=num_heads // 2,
 | |
|                     dim_out=dim // 2,
 | |
|                     qk_scale=qk_scale,
 | |
|                     attn_drop=attn_drop,
 | |
|                     proj_drop=drop,
 | |
|                     position_bias=True,
 | |
|                 )
 | |
|                 for i in range(self.branch_num)
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
 | |
|             self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
 | |
|         ):
 | |
|             attn_mask = self.calculate_mask(
 | |
|                 self.patches_resolution, self.patches_resolution
 | |
|             )
 | |
|             self.register_buffer("attn_mask_0", attn_mask[0])
 | |
|             self.register_buffer("attn_mask_1", attn_mask[1])
 | |
|         else:
 | |
|             attn_mask = None
 | |
|             self.register_buffer("attn_mask_0", None)
 | |
|             self.register_buffer("attn_mask_1", None)
 | |
| 
 | |
|         self.dwconv = nn.Sequential(
 | |
|             nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
 | |
|             nn.BatchNorm2d(dim),
 | |
|             nn.GELU(),
 | |
|         )
 | |
|         self.channel_interaction = nn.Sequential(
 | |
|             nn.AdaptiveAvgPool2d(1),
 | |
|             nn.Conv2d(dim, dim // 8, kernel_size=1),
 | |
|             nn.BatchNorm2d(dim // 8),
 | |
|             nn.GELU(),
 | |
|             nn.Conv2d(dim // 8, dim, kernel_size=1),
 | |
|         )
 | |
|         self.spatial_interaction = nn.Sequential(
 | |
|             nn.Conv2d(dim, dim // 16, kernel_size=1),
 | |
|             nn.BatchNorm2d(dim // 16),
 | |
|             nn.GELU(),
 | |
|             nn.Conv2d(dim // 16, 1, kernel_size=1),
 | |
|         )
 | |
| 
 | |
|     def calculate_mask(self, H, W):
 | |
|         # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
 | |
|         # calculate attention mask for shift window
 | |
|         img_mask_0 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=0
 | |
|         img_mask_1 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=1
 | |
|         h_slices_0 = (
 | |
|             slice(0, -self.split_size[0]),
 | |
|             slice(-self.split_size[0], -self.shift_size[0]),
 | |
|             slice(-self.shift_size[0], None),
 | |
|         )
 | |
|         w_slices_0 = (
 | |
|             slice(0, -self.split_size[1]),
 | |
|             slice(-self.split_size[1], -self.shift_size[1]),
 | |
|             slice(-self.shift_size[1], None),
 | |
|         )
 | |
| 
 | |
|         h_slices_1 = (
 | |
|             slice(0, -self.split_size[1]),
 | |
|             slice(-self.split_size[1], -self.shift_size[1]),
 | |
|             slice(-self.shift_size[1], None),
 | |
|         )
 | |
|         w_slices_1 = (
 | |
|             slice(0, -self.split_size[0]),
 | |
|             slice(-self.split_size[0], -self.shift_size[0]),
 | |
|             slice(-self.shift_size[0], None),
 | |
|         )
 | |
|         cnt = 0
 | |
|         for h in h_slices_0:
 | |
|             for w in w_slices_0:
 | |
|                 img_mask_0[:, h, w, :] = cnt
 | |
|                 cnt += 1
 | |
|         cnt = 0
 | |
|         for h in h_slices_1:
 | |
|             for w in w_slices_1:
 | |
|                 img_mask_1[:, h, w, :] = cnt
 | |
|                 cnt += 1
 | |
| 
 | |
|         # calculate mask for window-0
 | |
|         img_mask_0 = img_mask_0.view(
 | |
|             1,
 | |
|             H // self.split_size[0],
 | |
|             self.split_size[0],
 | |
|             W // self.split_size[1],
 | |
|             self.split_size[1],
 | |
|             1,
 | |
|         )
 | |
|         img_mask_0 = (
 | |
|             img_mask_0.permute(0, 1, 3, 2, 4, 5)
 | |
|             .contiguous()
 | |
|             .view(-1, self.split_size[0], self.split_size[1], 1)
 | |
|         )  # nW, sw[0], sw[1], 1
 | |
|         mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
 | |
|         attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
 | |
|         attn_mask_0 = attn_mask_0.masked_fill(
 | |
|             attn_mask_0 != 0, float(-100.0)
 | |
|         ).masked_fill(attn_mask_0 == 0, float(0.0))
 | |
| 
 | |
|         # calculate mask for window-1
 | |
|         img_mask_1 = img_mask_1.view(
 | |
|             1,
 | |
|             H // self.split_size[1],
 | |
|             self.split_size[1],
 | |
|             W // self.split_size[0],
 | |
|             self.split_size[0],
 | |
|             1,
 | |
|         )
 | |
|         img_mask_1 = (
 | |
|             img_mask_1.permute(0, 1, 3, 2, 4, 5)
 | |
|             .contiguous()
 | |
|             .view(-1, self.split_size[1], self.split_size[0], 1)
 | |
|         )  # nW, sw[1], sw[0], 1
 | |
|         mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
 | |
|         attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
 | |
|         attn_mask_1 = attn_mask_1.masked_fill(
 | |
|             attn_mask_1 != 0, float(-100.0)
 | |
|         ).masked_fill(attn_mask_1 == 0, float(0.0))
 | |
| 
 | |
|         return attn_mask_0, attn_mask_1
 | |
| 
 | |
|     def forward(self, x, H, W):
 | |
|         """
 | |
|         Input: x: (B, H*W, C), H, W
 | |
|         Output: x: (B, H*W, C)
 | |
|         """
 | |
|         B, L, C = x.shape
 | |
|         assert L == H * W, "flatten img_tokens has wrong size"
 | |
| 
 | |
|         qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3)  # 3, B, HW, C
 | |
|         # V without partition
 | |
|         v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W)
 | |
| 
 | |
|         # image padding
 | |
|         max_split_size = max(self.split_size[0], self.split_size[1])
 | |
|         pad_l = pad_t = 0
 | |
|         pad_r = (max_split_size - W % max_split_size) % max_split_size
 | |
|         pad_b = (max_split_size - H % max_split_size) % max_split_size
 | |
| 
 | |
|         qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2)  # 3B C H W
 | |
|         qkv = (
 | |
|             F.pad(qkv, (pad_l, pad_r, pad_t, pad_b))
 | |
|             .reshape(3, B, C, -1)
 | |
|             .transpose(-2, -1)
 | |
|         )  # l r t b
 | |
|         _H = pad_b + H
 | |
|         _W = pad_r + W
 | |
|         _L = _H * _W
 | |
| 
 | |
|         # window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
 | |
|         # shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
 | |
|         if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
 | |
|             self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
 | |
|         ):
 | |
|             qkv = qkv.view(3, B, _H, _W, C)
 | |
|             qkv_0 = torch.roll(
 | |
|                 qkv[:, :, :, :, : C // 2],
 | |
|                 shifts=(-self.shift_size[0], -self.shift_size[1]),
 | |
|                 dims=(2, 3),
 | |
|             )
 | |
|             qkv_0 = qkv_0.view(3, B, _L, C // 2)
 | |
|             qkv_1 = torch.roll(
 | |
|                 qkv[:, :, :, :, C // 2 :],
 | |
|                 shifts=(-self.shift_size[1], -self.shift_size[0]),
 | |
|                 dims=(2, 3),
 | |
|             )
 | |
|             qkv_1 = qkv_1.view(3, B, _L, C // 2)
 | |
| 
 | |
|             if self.patches_resolution != _H or self.patches_resolution != _W:
 | |
|                 mask_tmp = self.calculate_mask(_H, _W)
 | |
|                 x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
 | |
|                 x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
 | |
|             else:
 | |
|                 x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
 | |
|                 x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)
 | |
| 
 | |
|             x1 = torch.roll(
 | |
|                 x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)
 | |
|             )
 | |
|             x2 = torch.roll(
 | |
|                 x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2)
 | |
|             )
 | |
|             x1 = x1[:, :H, :W, :].reshape(B, L, C // 2)
 | |
|             x2 = x2[:, :H, :W, :].reshape(B, L, C // 2)
 | |
|             # attention output
 | |
|             attened_x = torch.cat([x1, x2], dim=2)
 | |
| 
 | |
|         else:
 | |
|             x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape(
 | |
|                 B, L, C // 2
 | |
|             )
 | |
|             x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape(
 | |
|                 B, L, C // 2
 | |
|             )
 | |
|             # attention output
 | |
|             attened_x = torch.cat([x1, x2], dim=2)
 | |
| 
 | |
|         # convolution output
 | |
|         conv_x = self.dwconv(v)
 | |
| 
 | |
|         # Adaptive Interaction Module (AIM)
 | |
|         # C-Map (before sigmoid)
 | |
|         channel_map = (
 | |
|             self.channel_interaction(conv_x)
 | |
|             .permute(0, 2, 3, 1)
 | |
|             .contiguous()
 | |
|             .view(B, 1, C)
 | |
|         )
 | |
|         # S-Map (before sigmoid)
 | |
|         attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
 | |
|         spatial_map = self.spatial_interaction(attention_reshape)
 | |
| 
 | |
|         # C-I
 | |
|         attened_x = attened_x * torch.sigmoid(channel_map)
 | |
|         # S-I
 | |
|         conv_x = torch.sigmoid(spatial_map) * conv_x
 | |
|         conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
 | |
| 
 | |
|         x = attened_x + conv_x
 | |
| 
 | |
|         x = self.proj(x)
 | |
|         x = self.proj_drop(x)
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class Adaptive_Channel_Attention(nn.Module):
 | |
|     # The implementation builds on XCiT code https://github.com/facebookresearch/xcit
 | |
|     """Adaptive Channel Self-Attention
 | |
|     Args:
 | |
|         dim (int): Number of input channels.
 | |
|         num_heads (int): Number of attention heads. Default: 6
 | |
|         qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
 | |
|         qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
 | |
|         attn_drop (float): Attention dropout rate. Default: 0.0
 | |
|         drop_path (float): Stochastic depth rate. Default: 0.0
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         dim,
 | |
|         num_heads=8,
 | |
|         qkv_bias=False,
 | |
|         qk_scale=None,
 | |
|         attn_drop=0.0,
 | |
|         proj_drop=0.0,
 | |
|     ):
 | |
|         super().__init__()
 | |
|         self.num_heads = num_heads
 | |
|         self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
 | |
| 
 | |
|         self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
 | |
|         self.attn_drop = nn.Dropout(attn_drop)
 | |
|         self.proj = nn.Linear(dim, dim)
 | |
|         self.proj_drop = nn.Dropout(proj_drop)
 | |
| 
 | |
|         self.dwconv = nn.Sequential(
 | |
|             nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
 | |
|             nn.BatchNorm2d(dim),
 | |
|             nn.GELU(),
 | |
|         )
 | |
|         self.channel_interaction = nn.Sequential(
 | |
|             nn.AdaptiveAvgPool2d(1),
 | |
|             nn.Conv2d(dim, dim // 8, kernel_size=1),
 | |
|             nn.BatchNorm2d(dim // 8),
 | |
|             nn.GELU(),
 | |
|             nn.Conv2d(dim // 8, dim, kernel_size=1),
 | |
|         )
 | |
|         self.spatial_interaction = nn.Sequential(
 | |
|             nn.Conv2d(dim, dim // 16, kernel_size=1),
 | |
|             nn.BatchNorm2d(dim // 16),
 | |
|             nn.GELU(),
 | |
|             nn.Conv2d(dim // 16, 1, kernel_size=1),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x, H, W):
 | |
|         """
 | |
|         Input: x: (B, H*W, C), H, W
 | |
|         Output: x: (B, H*W, C)
 | |
|         """
 | |
|         B, N, C = x.shape
 | |
|         qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
 | |
|         qkv = qkv.permute(2, 0, 3, 1, 4)
 | |
|         q, k, v = qkv[0], qkv[1], qkv[2]
 | |
| 
 | |
|         q = q.transpose(-2, -1)
 | |
|         k = k.transpose(-2, -1)
 | |
|         v = v.transpose(-2, -1)
 | |
| 
 | |
|         v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)
 | |
| 
 | |
|         q = torch.nn.functional.normalize(q, dim=-1)
 | |
|         k = torch.nn.functional.normalize(k, dim=-1)
 | |
| 
 | |
|         attn = (q @ k.transpose(-2, -1)) * self.temperature
 | |
|         attn = attn.softmax(dim=-1)
 | |
|         attn = self.attn_drop(attn)
 | |
| 
 | |
|         # attention output
 | |
|         attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
 | |
| 
 | |
|         # convolution output
 | |
|         conv_x = self.dwconv(v_)
 | |
| 
 | |
|         # Adaptive Interaction Module (AIM)
 | |
|         # C-Map (before sigmoid)
 | |
|         attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
 | |
|         channel_map = self.channel_interaction(attention_reshape)
 | |
|         # S-Map (before sigmoid)
 | |
|         spatial_map = (
 | |
|             self.spatial_interaction(conv_x)
 | |
|             .permute(0, 2, 3, 1)
 | |
|             .contiguous()
 | |
|             .view(B, N, 1)
 | |
|         )
 | |
| 
 | |
|         # S-I
 | |
|         attened_x = attened_x * torch.sigmoid(spatial_map)
 | |
|         # C-I
 | |
|         conv_x = conv_x * torch.sigmoid(channel_map)
 | |
|         conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)
 | |
| 
 | |
|         x = attened_x + conv_x
 | |
| 
 | |
|         x = self.proj(x)
 | |
|         x = self.proj_drop(x)
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class DATB(nn.Module):
 | |
|     def __init__(
 | |
|         self,
 | |
|         dim,
 | |
|         num_heads,
 | |
|         reso=64,
 | |
|         split_size=[2, 4],
 | |
|         shift_size=[1, 2],
 | |
|         expansion_factor=4.0,
 | |
|         qkv_bias=False,
 | |
|         qk_scale=None,
 | |
|         drop=0.0,
 | |
|         attn_drop=0.0,
 | |
|         drop_path=0.0,
 | |
|         act_layer=nn.GELU,
 | |
|         norm_layer=nn.LayerNorm,
 | |
|         rg_idx=0,
 | |
|         b_idx=0,
 | |
|     ):
 | |
|         super().__init__()
 | |
| 
 | |
|         self.norm1 = norm_layer(dim)
 | |
| 
 | |
|         if b_idx % 2 == 0:
 | |
|             # DSTB
 | |
|             self.attn = Adaptive_Spatial_Attention(
 | |
|                 dim,
 | |
|                 num_heads=num_heads,
 | |
|                 reso=reso,
 | |
|                 split_size=split_size,
 | |
|                 shift_size=shift_size,
 | |
|                 qkv_bias=qkv_bias,
 | |
|                 qk_scale=qk_scale,
 | |
|                 drop=drop,
 | |
|                 attn_drop=attn_drop,
 | |
|                 rg_idx=rg_idx,
 | |
|                 b_idx=b_idx,
 | |
|             )
 | |
|         else:
 | |
|             # DCTB
 | |
|             self.attn = Adaptive_Channel_Attention(
 | |
|                 dim,
 | |
|                 num_heads=num_heads,
 | |
|                 qkv_bias=qkv_bias,
 | |
|                 qk_scale=qk_scale,
 | |
|                 attn_drop=attn_drop,
 | |
|                 proj_drop=drop,
 | |
|             )
 | |
|         self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
 | |
| 
 | |
|         ffn_hidden_dim = int(dim * expansion_factor)
 | |
|         self.ffn = SGFN(
 | |
|             in_features=dim,
 | |
|             hidden_features=ffn_hidden_dim,
 | |
|             out_features=dim,
 | |
|             act_layer=act_layer,
 | |
|         )
 | |
|         self.norm2 = norm_layer(dim)
 | |
| 
 | |
|     def forward(self, x, x_size):
 | |
|         """
 | |
|         Input: x: (B, H*W, C), x_size: (H, W)
 | |
|         Output: x: (B, H*W, C)
 | |
|         """
 | |
|         H, W = x_size
 | |
|         x = x + self.drop_path(self.attn(self.norm1(x), H, W))
 | |
|         x = x + self.drop_path(self.ffn(self.norm2(x), H, W))
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class ResidualGroup(nn.Module):
 | |
|     """ResidualGroup
 | |
|     Args:
 | |
|         dim (int): Number of input channels.
 | |
|         reso (int): Input resolution.
 | |
|         num_heads (int): Number of attention heads.
 | |
|         split_size (tuple(int)): Height and Width of spatial window.
 | |
|         expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
 | |
|         qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
 | |
|         qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
 | |
|         drop (float): Dropout rate. Default: 0
 | |
|         attn_drop(float): Attention dropout rate. Default: 0
 | |
|         drop_paths (float | None): Stochastic depth rate.
 | |
|         act_layer (nn.Module): Activation layer. Default: nn.GELU
 | |
|         norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
 | |
|         depth (int): Number of dual aggregation Transformer blocks in residual group.
 | |
|         use_chk (bool): Whether to use checkpointing to save memory.
 | |
|         resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         dim,
 | |
|         reso,
 | |
|         num_heads,
 | |
|         split_size=[2, 4],
 | |
|         expansion_factor=4.0,
 | |
|         qkv_bias=False,
 | |
|         qk_scale=None,
 | |
|         drop=0.0,
 | |
|         attn_drop=0.0,
 | |
|         drop_paths=None,
 | |
|         act_layer=nn.GELU,
 | |
|         norm_layer=nn.LayerNorm,
 | |
|         depth=2,
 | |
|         use_chk=False,
 | |
|         resi_connection="1conv",
 | |
|         rg_idx=0,
 | |
|     ):
 | |
|         super().__init__()
 | |
|         self.use_chk = use_chk
 | |
|         self.reso = reso
 | |
| 
 | |
|         self.blocks = nn.ModuleList(
 | |
|             [
 | |
|                 DATB(
 | |
|                     dim=dim,
 | |
|                     num_heads=num_heads,
 | |
|                     reso=reso,
 | |
|                     split_size=split_size,
 | |
|                     shift_size=[split_size[0] // 2, split_size[1] // 2],
 | |
|                     expansion_factor=expansion_factor,
 | |
|                     qkv_bias=qkv_bias,
 | |
|                     qk_scale=qk_scale,
 | |
|                     drop=drop,
 | |
|                     attn_drop=attn_drop,
 | |
|                     drop_path=drop_paths[i],
 | |
|                     act_layer=act_layer,
 | |
|                     norm_layer=norm_layer,
 | |
|                     rg_idx=rg_idx,
 | |
|                     b_idx=i,
 | |
|                 )
 | |
|                 for i in range(depth)
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         if resi_connection == "1conv":
 | |
|             self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
 | |
|         elif resi_connection == "3conv":
 | |
|             self.conv = nn.Sequential(
 | |
|                 nn.Conv2d(dim, dim // 4, 3, 1, 1),
 | |
|                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
 | |
|                 nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
 | |
|                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
 | |
|                 nn.Conv2d(dim // 4, dim, 3, 1, 1),
 | |
|             )
 | |
| 
 | |
|     def forward(self, x, x_size):
 | |
|         """
 | |
|         Input: x: (B, H*W, C), x_size: (H, W)
 | |
|         Output: x: (B, H*W, C)
 | |
|         """
 | |
|         H, W = x_size
 | |
|         res = x
 | |
|         for blk in self.blocks:
 | |
|             if self.use_chk:
 | |
|                 x = checkpoint.checkpoint(blk, x, x_size)
 | |
|             else:
 | |
|                 x = blk(x, x_size)
 | |
|         x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
 | |
|         x = self.conv(x)
 | |
|         x = rearrange(x, "b c h w -> b (h w) c")
 | |
|         x = res + x
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class Upsample(nn.Sequential):
 | |
|     """Upsample module.
 | |
|     Args:
 | |
|         scale (int): Scale factor. Supported scales: 2^n and 3.
 | |
|         num_feat (int): Channel number of intermediate features.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, scale, num_feat):
 | |
|         m = []
 | |
|         if (scale & (scale - 1)) == 0:  # scale = 2^n
 | |
|             for _ in range(int(math.log(scale, 2))):
 | |
|                 m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
 | |
|                 m.append(nn.PixelShuffle(2))
 | |
|         elif scale == 3:
 | |
|             m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
 | |
|             m.append(nn.PixelShuffle(3))
 | |
|         else:
 | |
|             raise ValueError(
 | |
|                 f"scale {scale} is not supported. " "Supported scales: 2^n and 3."
 | |
|             )
 | |
|         super(Upsample, self).__init__(*m)
 | |
| 
 | |
| 
 | |
| class UpsampleOneStep(nn.Sequential):
 | |
|     """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
 | |
|        Used in lightweight SR to save parameters.
 | |
| 
 | |
|     Args:
 | |
|         scale (int): Scale factor. Supported scales: 2^n and 3.
 | |
|         num_feat (int): Channel number of intermediate features.
 | |
| 
 | |
|     """
 | |
| 
 | |
|     def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
 | |
|         self.num_feat = num_feat
 | |
|         self.input_resolution = input_resolution
 | |
|         m = []
 | |
|         m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
 | |
|         m.append(nn.PixelShuffle(scale))
 | |
|         super(UpsampleOneStep, self).__init__(*m)
 | |
| 
 | |
|     def flops(self):
 | |
|         h, w = self.input_resolution
 | |
|         flops = h * w * self.num_feat * 3 * 9
 | |
|         return flops
 | |
| 
 | |
| 
 | |
| class DAT(nn.Module):
 | |
|     """Dual Aggregation Transformer
 | |
|     Args:
 | |
|         img_size (int): Input image size. Default: 64
 | |
|         in_chans (int): Number of input image channels. Default: 3
 | |
|         embed_dim (int): Patch embedding dimension. Default: 180
 | |
|         depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
 | |
|         split_size (tuple(int)): Height and Width of spatial window.
 | |
|         num_heads (tuple(int)): Number of attention heads in different residual groups.
 | |
|         expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4
 | |
|         qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
 | |
|         qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
 | |
|         drop_rate (float): Dropout rate. Default: 0
 | |
|         attn_drop_rate (float): Attention dropout rate. Default: 0
 | |
|         drop_path_rate (float): Stochastic depth rate. Default: 0.1
 | |
|         act_layer (nn.Module): Activation layer. Default: nn.GELU
 | |
|         norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
 | |
|         use_chk (bool): Whether to use checkpointing to save memory.
 | |
|         upscale: Upscale factor. 2/3/4 for image SR
 | |
|         img_range: Image range. 1. or 255.
 | |
|         resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
 | |
|     """
 | |
| 
 | |
|     def __init__(self, state_dict):
 | |
|         super().__init__()
 | |
| 
 | |
|         # defaults
 | |
|         img_size = 64
 | |
|         in_chans = 3
 | |
|         embed_dim = 180
 | |
|         split_size = [2, 4]
 | |
|         depth = [2, 2, 2, 2]
 | |
|         num_heads = [2, 2, 2, 2]
 | |
|         expansion_factor = 4.0
 | |
|         qkv_bias = True
 | |
|         qk_scale = None
 | |
|         drop_rate = 0.0
 | |
|         attn_drop_rate = 0.0
 | |
|         drop_path_rate = 0.1
 | |
|         act_layer = nn.GELU
 | |
|         norm_layer = nn.LayerNorm
 | |
|         use_chk = False
 | |
|         upscale = 2
 | |
|         img_range = 1.0
 | |
|         resi_connection = "1conv"
 | |
|         upsampler = "pixelshuffle"
 | |
| 
 | |
|         self.model_arch = "DAT"
 | |
|         self.sub_type = "SR"
 | |
|         self.state = state_dict
 | |
| 
 | |
|         state_keys = state_dict.keys()
 | |
|         if "conv_before_upsample.0.weight" in state_keys:
 | |
|             if "conv_up1.weight" in state_keys:
 | |
|                 upsampler = "nearest+conv"
 | |
|             else:
 | |
|                 upsampler = "pixelshuffle"
 | |
|                 supports_fp16 = False
 | |
|         elif "upsample.0.weight" in state_keys:
 | |
|             upsampler = "pixelshuffledirect"
 | |
|         else:
 | |
|             upsampler = ""
 | |
| 
 | |
|         num_feat = (
 | |
|             state_dict.get("conv_before_upsample.0.weight", None).shape[1]
 | |
|             if state_dict.get("conv_before_upsample.weight", None)
 | |
|             else 64
 | |
|         )
 | |
| 
 | |
|         num_in_ch = state_dict["conv_first.weight"].shape[1]
 | |
|         in_chans = num_in_ch
 | |
|         if "conv_last.weight" in state_keys:
 | |
|             num_out_ch = state_dict["conv_last.weight"].shape[0]
 | |
|         else:
 | |
|             num_out_ch = num_in_ch
 | |
| 
 | |
|         upscale = 1
 | |
|         if upsampler == "nearest+conv":
 | |
|             upsample_keys = [
 | |
|                 x for x in state_keys if "conv_up" in x and "bias" not in x
 | |
|             ]
 | |
| 
 | |
|             for upsample_key in upsample_keys:
 | |
|                 upscale *= 2
 | |
|         elif upsampler == "pixelshuffle":
 | |
|             upsample_keys = [
 | |
|                 x
 | |
|                 for x in state_keys
 | |
|                 if "upsample" in x and "conv" not in x and "bias" not in x
 | |
|             ]
 | |
|             for upsample_key in upsample_keys:
 | |
|                 shape = state_dict[upsample_key].shape[0]
 | |
|                 upscale *= math.sqrt(shape // num_feat)
 | |
|             upscale = int(upscale)
 | |
|         elif upsampler == "pixelshuffledirect":
 | |
|             upscale = int(
 | |
|                 math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch)
 | |
|             )
 | |
| 
 | |
|         max_layer_num = 0
 | |
|         max_block_num = 0
 | |
|         for key in state_keys:
 | |
|             result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key)
 | |
|             if result:
 | |
|                 layer_num, block_num = result.groups()
 | |
|                 max_layer_num = max(max_layer_num, int(layer_num))
 | |
|                 max_block_num = max(max_block_num, int(block_num))
 | |
| 
 | |
|         depth = [max_block_num + 1 for _ in range(max_layer_num + 1)]
 | |
| 
 | |
|         if "layers.0.blocks.1.attn.temperature" in state_keys:
 | |
|             num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0]
 | |
|             num_heads = [num_heads_num for _ in range(max_layer_num + 1)]
 | |
|         else:
 | |
|             num_heads = depth
 | |
| 
 | |
|         embed_dim = state_dict["conv_first.weight"].shape[0]
 | |
|         expansion_factor = float(
 | |
|             state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim
 | |
|         )
 | |
| 
 | |
|         # TODO: could actually count the layers, but this should do
 | |
|         if "layers.0.conv.4.weight" in state_keys:
 | |
|             resi_connection = "3conv"
 | |
|         else:
 | |
|             resi_connection = "1conv"
 | |
| 
 | |
|         if "layers.0.blocks.2.attn.attn_mask_0" in state_keys:
 | |
|             attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[
 | |
|                 "layers.0.blocks.2.attn.attn_mask_0"
 | |
|             ].shape
 | |
| 
 | |
|             img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y))
 | |
| 
 | |
|         if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys:
 | |
|             split_sizes = (
 | |
|                 state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1
 | |
|             )
 | |
|             split_size = [int(x) for x in split_sizes]
 | |
| 
 | |
|         self.in_nc = num_in_ch
 | |
|         self.out_nc = num_out_ch
 | |
|         self.num_feat = num_feat
 | |
|         self.embed_dim = embed_dim
 | |
|         self.num_heads = num_heads
 | |
|         self.depth = depth
 | |
|         self.scale = upscale
 | |
|         self.upsampler = upsampler
 | |
|         self.img_size = img_size
 | |
|         self.img_range = img_range
 | |
|         self.expansion_factor = expansion_factor
 | |
|         self.resi_connection = resi_connection
 | |
|         self.split_size = split_size
 | |
| 
 | |
|         self.supports_fp16 = False  # Too much weirdness to support this at the moment
 | |
|         self.supports_bfp16 = True
 | |
|         self.min_size_restriction = 16
 | |
| 
 | |
|         num_in_ch = in_chans
 | |
|         num_out_ch = in_chans
 | |
|         num_feat = 64
 | |
|         self.img_range = img_range
 | |
|         if in_chans == 3:
 | |
|             rgb_mean = (0.4488, 0.4371, 0.4040)
 | |
|             self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
 | |
|         else:
 | |
|             self.mean = torch.zeros(1, 1, 1, 1)
 | |
|         self.upscale = upscale
 | |
|         self.upsampler = upsampler
 | |
| 
 | |
|         # ------------------------- 1, Shallow Feature Extraction ------------------------- #
 | |
|         self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
 | |
| 
 | |
|         # ------------------------- 2, Deep Feature Extraction ------------------------- #
 | |
|         self.num_layers = len(depth)
 | |
|         self.use_chk = use_chk
 | |
|         self.num_features = (
 | |
|             self.embed_dim
 | |
|         ) = embed_dim  # num_features for consistency with other models
 | |
|         heads = num_heads
 | |
| 
 | |
|         self.before_RG = nn.Sequential(
 | |
|             Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim)
 | |
|         )
 | |
| 
 | |
|         curr_dim = embed_dim
 | |
|         dpr = [
 | |
|             x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))
 | |
|         ]  # stochastic depth decay rule
 | |
| 
 | |
|         self.layers = nn.ModuleList()
 | |
|         for i in range(self.num_layers):
 | |
|             layer = ResidualGroup(
 | |
|                 dim=embed_dim,
 | |
|                 num_heads=heads[i],
 | |
|                 reso=img_size,
 | |
|                 split_size=split_size,
 | |
|                 expansion_factor=expansion_factor,
 | |
|                 qkv_bias=qkv_bias,
 | |
|                 qk_scale=qk_scale,
 | |
|                 drop=drop_rate,
 | |
|                 attn_drop=attn_drop_rate,
 | |
|                 drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])],
 | |
|                 act_layer=act_layer,
 | |
|                 norm_layer=norm_layer,
 | |
|                 depth=depth[i],
 | |
|                 use_chk=use_chk,
 | |
|                 resi_connection=resi_connection,
 | |
|                 rg_idx=i,
 | |
|             )
 | |
|             self.layers.append(layer)
 | |
| 
 | |
|         self.norm = norm_layer(curr_dim)
 | |
|         # build the last conv layer in deep feature extraction
 | |
|         if resi_connection == "1conv":
 | |
|             self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
 | |
|         elif resi_connection == "3conv":
 | |
|             # to save parameters and memory
 | |
|             self.conv_after_body = nn.Sequential(
 | |
|                 nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
 | |
|                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
 | |
|                 nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
 | |
|                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
 | |
|                 nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1),
 | |
|             )
 | |
| 
 | |
|         # ------------------------- 3, Reconstruction ------------------------- #
 | |
|         if self.upsampler == "pixelshuffle":
 | |
|             # for classical SR
 | |
|             self.conv_before_upsample = nn.Sequential(
 | |
|                 nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)
 | |
|             )
 | |
|             self.upsample = Upsample(upscale, num_feat)
 | |
|             self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
 | |
|         elif self.upsampler == "pixelshuffledirect":
 | |
|             # for lightweight SR (to save parameters)
 | |
|             self.upsample = UpsampleOneStep(
 | |
|                 upscale, embed_dim, num_out_ch, (img_size, img_size)
 | |
|             )
 | |
| 
 | |
|         self.apply(self._init_weights)
 | |
|         self.load_state_dict(state_dict, strict=True)
 | |
| 
 | |
|     def _init_weights(self, m):
 | |
|         if isinstance(m, nn.Linear):
 | |
|             trunc_normal_(m.weight, std=0.02)
 | |
|             if isinstance(m, nn.Linear) and m.bias is not None:
 | |
|                 nn.init.constant_(m.bias, 0)
 | |
|         elif isinstance(
 | |
|             m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)
 | |
|         ):
 | |
|             nn.init.constant_(m.bias, 0)
 | |
|             nn.init.constant_(m.weight, 1.0)
 | |
| 
 | |
|     def forward_features(self, x):
 | |
|         _, _, H, W = x.shape
 | |
|         x_size = [H, W]
 | |
|         x = self.before_RG(x)
 | |
|         for layer in self.layers:
 | |
|             x = layer(x, x_size)
 | |
|         x = self.norm(x)
 | |
|         x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
 | |
| 
 | |
|         return x
 | |
| 
 | |
|     def forward(self, x):
 | |
|         """
 | |
|         Input: x: (B, C, H, W)
 | |
|         """
 | |
|         self.mean = self.mean.type_as(x)
 | |
|         x = (x - self.mean) * self.img_range
 | |
| 
 | |
|         if self.upsampler == "pixelshuffle":
 | |
|             # for image SR
 | |
|             x = self.conv_first(x)
 | |
|             x = self.conv_after_body(self.forward_features(x)) + x
 | |
|             x = self.conv_before_upsample(x)
 | |
|             x = self.conv_last(self.upsample(x))
 | |
|         elif self.upsampler == "pixelshuffledirect":
 | |
|             # for lightweight SR
 | |
|             x = self.conv_first(x)
 | |
|             x = self.conv_after_body(self.forward_features(x)) + x
 | |
|             x = self.upsample(x)
 | |
| 
 | |
|         x = x / self.img_range + self.mean
 | |
|         return x
 |