786 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			786 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from .k_diffusion import sampling as k_diffusion_sampling
 | |
| from .k_diffusion import external as k_diffusion_external
 | |
| from .extra_samplers import uni_pc
 | |
| import torch
 | |
| from comfy import model_management
 | |
| from .ldm.models.diffusion.ddim import DDIMSampler
 | |
| from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
 | |
| import math
 | |
| from comfy import model_base
 | |
| import comfy.utils
 | |
| 
 | |
| def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
 | |
|     return abs(a*b) // math.gcd(a, b)
 | |
| 
 | |
| #The main sampling function shared by all the samplers
 | |
| #Returns predicted noise
 | |
| def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
 | |
|         def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
 | |
|             area = (x_in.shape[2], x_in.shape[3], 0, 0)
 | |
|             strength = 1.0
 | |
|             if 'timestep_start' in cond[1]:
 | |
|                 timestep_start = cond[1]['timestep_start']
 | |
|                 if timestep_in[0] > timestep_start:
 | |
|                     return None
 | |
|             if 'timestep_end' in cond[1]:
 | |
|                 timestep_end = cond[1]['timestep_end']
 | |
|                 if timestep_in[0] < timestep_end:
 | |
|                     return None
 | |
|             if 'area' in cond[1]:
 | |
|                 area = cond[1]['area']
 | |
|             if 'strength' in cond[1]:
 | |
|                 strength = cond[1]['strength']
 | |
| 
 | |
|             adm_cond = None
 | |
|             if 'adm_encoded' in cond[1]:
 | |
|                 adm_cond = cond[1]['adm_encoded']
 | |
| 
 | |
|             input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
 | |
|             if 'mask' in cond[1]:
 | |
|                 # Scale the mask to the size of the input
 | |
|                 # The mask should have been resized as we began the sampling process
 | |
|                 mask_strength = 1.0
 | |
|                 if "mask_strength" in cond[1]:
 | |
|                     mask_strength = cond[1]["mask_strength"]
 | |
|                 mask = cond[1]['mask']
 | |
|                 assert(mask.shape[1] == x_in.shape[2])
 | |
|                 assert(mask.shape[2] == x_in.shape[3])
 | |
|                 mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
 | |
|                 mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
 | |
|             else:
 | |
|                 mask = torch.ones_like(input_x)
 | |
|             mult = mask * strength
 | |
| 
 | |
|             if 'mask' not in cond[1]:
 | |
|                 rr = 8
 | |
|                 if area[2] != 0:
 | |
|                     for t in range(rr):
 | |
|                         mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
 | |
|                 if (area[0] + area[2]) < x_in.shape[2]:
 | |
|                     for t in range(rr):
 | |
|                         mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
 | |
|                 if area[3] != 0:
 | |
|                     for t in range(rr):
 | |
|                         mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
 | |
|                 if (area[1] + area[3]) < x_in.shape[3]:
 | |
|                     for t in range(rr):
 | |
|                         mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
 | |
| 
 | |
|             conditionning = {}
 | |
|             conditionning['c_crossattn'] = cond[0]
 | |
|             if cond_concat_in is not None and len(cond_concat_in) > 0:
 | |
|                 cropped = []
 | |
|                 for x in cond_concat_in:
 | |
|                     cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
 | |
|                     cropped.append(cr)
 | |
|                 conditionning['c_concat'] = torch.cat(cropped, dim=1)
 | |
| 
 | |
|             if adm_cond is not None:
 | |
|                 conditionning['c_adm'] = adm_cond
 | |
| 
 | |
|             control = None
 | |
|             if 'control' in cond[1]:
 | |
|                 control = cond[1]['control']
 | |
| 
 | |
|             patches = None
 | |
|             if 'gligen' in cond[1]:
 | |
|                 gligen = cond[1]['gligen']
 | |
|                 patches = {}
 | |
|                 gligen_type = gligen[0]
 | |
|                 gligen_model = gligen[1]
 | |
|                 if gligen_type == "position":
 | |
|                     gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
 | |
|                 else:
 | |
|                     gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
 | |
| 
 | |
|                 patches['middle_patch'] = [gligen_patch]
 | |
| 
 | |
|             return (input_x, mult, conditionning, area, control, patches)
 | |
| 
 | |
|         def cond_equal_size(c1, c2):
 | |
|             if c1 is c2:
 | |
|                 return True
 | |
|             if c1.keys() != c2.keys():
 | |
|                 return False
 | |
|             if 'c_crossattn' in c1:
 | |
|                 s1 = c1['c_crossattn'].shape
 | |
|                 s2 = c2['c_crossattn'].shape
 | |
|                 if s1 != s2:
 | |
|                     if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
 | |
|                         return False
 | |
| 
 | |
|                     mult_min = lcm(s1[1], s2[1])
 | |
|                     diff = mult_min // min(s1[1], s2[1])
 | |
|                     if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
 | |
|                         return False
 | |
|             if 'c_concat' in c1:
 | |
|                 if c1['c_concat'].shape != c2['c_concat'].shape:
 | |
|                     return False
 | |
|             if 'c_adm' in c1:
 | |
|                 if c1['c_adm'].shape != c2['c_adm'].shape:
 | |
|                     return False
 | |
|             return True
 | |
| 
 | |
|         def can_concat_cond(c1, c2):
 | |
|             if c1[0].shape != c2[0].shape:
 | |
|                 return False
 | |
| 
 | |
|             #control
 | |
|             if (c1[4] is None) != (c2[4] is None):
 | |
|                 return False
 | |
|             if c1[4] is not None:
 | |
|                 if c1[4] is not c2[4]:
 | |
|                     return False
 | |
| 
 | |
|             #patches
 | |
|             if (c1[5] is None) != (c2[5] is None):
 | |
|                 return False
 | |
|             if (c1[5] is not None):
 | |
|                 if c1[5] is not c2[5]:
 | |
|                     return False
 | |
| 
 | |
|             return cond_equal_size(c1[2], c2[2])
 | |
| 
 | |
|         def cond_cat(c_list):
 | |
|             c_crossattn = []
 | |
|             c_concat = []
 | |
|             c_adm = []
 | |
|             crossattn_max_len = 0
 | |
|             for x in c_list:
 | |
|                 if 'c_crossattn' in x:
 | |
|                     c = x['c_crossattn']
 | |
|                     if crossattn_max_len == 0:
 | |
|                         crossattn_max_len = c.shape[1]
 | |
|                     else:
 | |
|                         crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
 | |
|                     c_crossattn.append(c)
 | |
|                 if 'c_concat' in x:
 | |
|                     c_concat.append(x['c_concat'])
 | |
|                 if 'c_adm' in x:
 | |
|                     c_adm.append(x['c_adm'])
 | |
|             out = {}
 | |
|             c_crossattn_out = []
 | |
|             for c in c_crossattn:
 | |
|                 if c.shape[1] < crossattn_max_len:
 | |
|                     c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
 | |
|                 c_crossattn_out.append(c)
 | |
| 
 | |
|             if len(c_crossattn_out) > 0:
 | |
|                 out['c_crossattn'] = torch.cat(c_crossattn_out)
 | |
|             if len(c_concat) > 0:
 | |
|                 out['c_concat'] = torch.cat(c_concat)
 | |
|             if len(c_adm) > 0:
 | |
|                 out['c_adm'] = torch.cat(c_adm)
 | |
|             return out
 | |
| 
 | |
|         def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
 | |
|             out_cond = torch.zeros_like(x_in)
 | |
|             out_count = torch.ones_like(x_in)/100000.0
 | |
| 
 | |
|             out_uncond = torch.zeros_like(x_in)
 | |
|             out_uncond_count = torch.ones_like(x_in)/100000.0
 | |
| 
 | |
|             COND = 0
 | |
|             UNCOND = 1
 | |
| 
 | |
|             to_run = []
 | |
|             for x in cond:
 | |
|                 p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
 | |
|                 if p is None:
 | |
|                     continue
 | |
| 
 | |
|                 to_run += [(p, COND)]
 | |
|             if uncond is not None:
 | |
|                 for x in uncond:
 | |
|                     p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
 | |
|                     if p is None:
 | |
|                         continue
 | |
| 
 | |
|                     to_run += [(p, UNCOND)]
 | |
| 
 | |
|             while len(to_run) > 0:
 | |
|                 first = to_run[0]
 | |
|                 first_shape = first[0][0].shape
 | |
|                 to_batch_temp = []
 | |
|                 for x in range(len(to_run)):
 | |
|                     if can_concat_cond(to_run[x][0], first[0]):
 | |
|                         to_batch_temp += [x]
 | |
| 
 | |
|                 to_batch_temp.reverse()
 | |
|                 to_batch = to_batch_temp[:1]
 | |
| 
 | |
|                 for i in range(1, len(to_batch_temp) + 1):
 | |
|                     batch_amount = to_batch_temp[:len(to_batch_temp)//i]
 | |
|                     if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
 | |
|                         to_batch = batch_amount
 | |
|                         break
 | |
| 
 | |
|                 input_x = []
 | |
|                 mult = []
 | |
|                 c = []
 | |
|                 cond_or_uncond = []
 | |
|                 area = []
 | |
|                 control = None
 | |
|                 patches = None
 | |
|                 for x in to_batch:
 | |
|                     o = to_run.pop(x)
 | |
|                     p = o[0]
 | |
|                     input_x += [p[0]]
 | |
|                     mult += [p[1]]
 | |
|                     c += [p[2]]
 | |
|                     area += [p[3]]
 | |
|                     cond_or_uncond += [o[1]]
 | |
|                     control = p[4]
 | |
|                     patches = p[5]
 | |
| 
 | |
|                 batch_chunks = len(cond_or_uncond)
 | |
|                 input_x = torch.cat(input_x)
 | |
|                 c = cond_cat(c)
 | |
|                 timestep_ = torch.cat([timestep] * batch_chunks)
 | |
| 
 | |
|                 if control is not None:
 | |
|                     c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
 | |
| 
 | |
|                 transformer_options = {}
 | |
|                 if 'transformer_options' in model_options:
 | |
|                     transformer_options = model_options['transformer_options'].copy()
 | |
| 
 | |
|                 if patches is not None:
 | |
|                     if "patches" in transformer_options:
 | |
|                         cur_patches = transformer_options["patches"].copy()
 | |
|                         for p in patches:
 | |
|                             if p in cur_patches:
 | |
|                                 cur_patches[p] = cur_patches[p] + patches[p]
 | |
|                             else:
 | |
|                                 cur_patches[p] = patches[p]
 | |
|                     else:
 | |
|                         transformer_options["patches"] = patches
 | |
| 
 | |
|                 transformer_options["cond_or_uncond"] = cond_or_uncond[:]
 | |
|                 c['transformer_options'] = transformer_options
 | |
| 
 | |
|                 if 'model_function_wrapper' in model_options:
 | |
|                     output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
 | |
|                 else:
 | |
|                     output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
 | |
|                 del input_x
 | |
| 
 | |
|                 for o in range(batch_chunks):
 | |
|                     if cond_or_uncond[o] == COND:
 | |
|                         out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
 | |
|                         out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
 | |
|                     else:
 | |
|                         out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
 | |
|                         out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
 | |
|                 del mult
 | |
| 
 | |
|             out_cond /= out_count
 | |
|             del out_count
 | |
|             out_uncond /= out_uncond_count
 | |
|             del out_uncond_count
 | |
| 
 | |
|             return out_cond, out_uncond
 | |
| 
 | |
| 
 | |
|         max_total_area = model_management.maximum_batch_area()
 | |
|         if math.isclose(cond_scale, 1.0):
 | |
|             uncond = None
 | |
| 
 | |
|         cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
 | |
|         if "sampler_cfg_function" in model_options:
 | |
|             args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
 | |
|             return model_options["sampler_cfg_function"](args)
 | |
|         else:
 | |
|             return uncond + (cond - uncond) * cond_scale
 | |
| 
 | |
| 
 | |
| class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
 | |
|     def __init__(self, model, quantize=False, device='cpu'):
 | |
|         super().__init__(model, model.alphas_cumprod, quantize=quantize)
 | |
| 
 | |
|     def get_v(self, x, t, cond, **kwargs):
 | |
|         return self.inner_model.apply_model(x, t, cond, **kwargs)
 | |
| 
 | |
| 
 | |
| class CFGNoisePredictor(torch.nn.Module):
 | |
|     def __init__(self, model):
 | |
|         super().__init__()
 | |
|         self.inner_model = model
 | |
|         self.alphas_cumprod = model.alphas_cumprod
 | |
|     def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
 | |
|         out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class KSamplerX0Inpaint(torch.nn.Module):
 | |
|     def __init__(self, model):
 | |
|         super().__init__()
 | |
|         self.inner_model = model
 | |
|     def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
 | |
|         if denoise_mask is not None:
 | |
|             latent_mask = 1. - denoise_mask
 | |
|             x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
 | |
|         out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
 | |
|         if denoise_mask is not None:
 | |
|             out *= denoise_mask
 | |
| 
 | |
|         if denoise_mask is not None:
 | |
|             out += self.latent_image * latent_mask
 | |
|         return out
 | |
| 
 | |
| def simple_scheduler(model, steps):
 | |
|     sigs = []
 | |
|     ss = len(model.sigmas) / steps
 | |
|     for x in range(steps):
 | |
|         sigs += [float(model.sigmas[-(1 + int(x * ss))])]
 | |
|     sigs += [0.0]
 | |
|     return torch.FloatTensor(sigs)
 | |
| 
 | |
| def ddim_scheduler(model, steps):
 | |
|     sigs = []
 | |
|     ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
 | |
|     for x in range(len(ddim_timesteps) - 1, -1, -1):
 | |
|         ts = ddim_timesteps[x]
 | |
|         if ts > 999:
 | |
|             ts = 999
 | |
|         sigs.append(model.t_to_sigma(torch.tensor(ts)))
 | |
|     sigs += [0.0]
 | |
|     return torch.FloatTensor(sigs)
 | |
| 
 | |
| def sgm_scheduler(model, steps):
 | |
|     sigs = []
 | |
|     timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int)
 | |
|     for x in range(len(timesteps)):
 | |
|         ts = timesteps[x]
 | |
|         if ts > 999:
 | |
|             ts = 999
 | |
|         sigs.append(model.t_to_sigma(torch.tensor(ts)))
 | |
|     sigs += [0.0]
 | |
|     return torch.FloatTensor(sigs)
 | |
| 
 | |
| def blank_inpaint_image_like(latent_image):
 | |
|     blank_image = torch.ones_like(latent_image)
 | |
|     # these are the values for "zero" in pixel space translated to latent space
 | |
|     blank_image[:,0] *= 0.8223
 | |
|     blank_image[:,1] *= -0.6876
 | |
|     blank_image[:,2] *= 0.6364
 | |
|     blank_image[:,3] *= 0.1380
 | |
|     return blank_image
 | |
| 
 | |
| def get_mask_aabb(masks):
 | |
|     if masks.numel() == 0:
 | |
|         return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
 | |
| 
 | |
|     b = masks.shape[0]
 | |
| 
 | |
|     bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
 | |
|     is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
 | |
|     for i in range(b):
 | |
|         mask = masks[i]
 | |
|         if mask.numel() == 0:
 | |
|             continue
 | |
|         if torch.max(mask != 0) == False:
 | |
|             is_empty[i] = True
 | |
|             continue
 | |
|         y, x = torch.where(mask)
 | |
|         bounding_boxes[i, 0] = torch.min(x)
 | |
|         bounding_boxes[i, 1] = torch.min(y)
 | |
|         bounding_boxes[i, 2] = torch.max(x)
 | |
|         bounding_boxes[i, 3] = torch.max(y)
 | |
| 
 | |
|     return bounding_boxes, is_empty
 | |
| 
 | |
| def resolve_areas_and_cond_masks(conditions, h, w, device):
 | |
|     # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
 | |
|     # While we're doing this, we can also resolve the mask device and scaling for performance reasons
 | |
|     for i in range(len(conditions)):
 | |
|         c = conditions[i]
 | |
|         if 'area' in c[1]:
 | |
|             area = c[1]['area']
 | |
|             if area[0] == "percentage":
 | |
|                 modified = c[1].copy()
 | |
|                 area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
 | |
|                 modified['area'] = area
 | |
|                 c = [c[0], modified]
 | |
|                 conditions[i] = c
 | |
| 
 | |
|         if 'mask' in c[1]:
 | |
|             mask = c[1]['mask']
 | |
|             mask = mask.to(device=device)
 | |
|             modified = c[1].copy()
 | |
|             if len(mask.shape) == 2:
 | |
|                 mask = mask.unsqueeze(0)
 | |
|             if mask.shape[1] != h or mask.shape[2] != w:
 | |
|                 mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)
 | |
| 
 | |
|             if modified.get("set_area_to_bounds", False):
 | |
|                 bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
 | |
|                 boxes, is_empty = get_mask_aabb(bounds)
 | |
|                 if is_empty[0]:
 | |
|                     # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
 | |
|                     modified['area'] = (8, 8, 0, 0)
 | |
|                 else:
 | |
|                     box = boxes[0]
 | |
|                     H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
 | |
|                     H = max(8, H)
 | |
|                     W = max(8, W)
 | |
|                     area = (int(H), int(W), int(Y), int(X))
 | |
|                     modified['area'] = area
 | |
| 
 | |
|             modified['mask'] = mask
 | |
|             conditions[i] = [c[0], modified]
 | |
| 
 | |
| def create_cond_with_same_area_if_none(conds, c):
 | |
|     if 'area' not in c[1]:
 | |
|         return
 | |
| 
 | |
|     c_area = c[1]['area']
 | |
|     smallest = None
 | |
|     for x in conds:
 | |
|         if 'area' in x[1]:
 | |
|             a = x[1]['area']
 | |
|             if c_area[2] >= a[2] and c_area[3] >= a[3]:
 | |
|                 if a[0] + a[2] >= c_area[0] + c_area[2]:
 | |
|                     if a[1] + a[3] >= c_area[1] + c_area[3]:
 | |
|                         if smallest is None:
 | |
|                             smallest = x
 | |
|                         elif 'area' not in smallest[1]:
 | |
|                             smallest = x
 | |
|                         else:
 | |
|                             if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
 | |
|                                 smallest = x
 | |
|         else:
 | |
|             if smallest is None:
 | |
|                 smallest = x
 | |
|     if smallest is None:
 | |
|         return
 | |
|     if 'area' in smallest[1]:
 | |
|         if smallest[1]['area'] == c_area:
 | |
|             return
 | |
|     n = c[1].copy()
 | |
|     conds += [[smallest[0], n]]
 | |
| 
 | |
| def calculate_start_end_timesteps(model, conds):
 | |
|     for t in range(len(conds)):
 | |
|         x = conds[t]
 | |
| 
 | |
|         timestep_start = None
 | |
|         timestep_end = None
 | |
|         if 'start_percent' in x[1]:
 | |
|             timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
 | |
|         if 'end_percent' in x[1]:
 | |
|             timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))
 | |
| 
 | |
|         if (timestep_start is not None) or (timestep_end is not None):
 | |
|             n = x[1].copy()
 | |
|             if (timestep_start is not None):
 | |
|                 n['timestep_start'] = timestep_start
 | |
|             if (timestep_end is not None):
 | |
|                 n['timestep_end'] = timestep_end
 | |
|             conds[t] = [x[0], n]
 | |
| 
 | |
| def pre_run_control(model, conds):
 | |
|     for t in range(len(conds)):
 | |
|         x = conds[t]
 | |
| 
 | |
|         timestep_start = None
 | |
|         timestep_end = None
 | |
|         percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
 | |
|         if 'control' in x[1]:
 | |
|             x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
 | |
| 
 | |
| def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
 | |
|     cond_cnets = []
 | |
|     cond_other = []
 | |
|     uncond_cnets = []
 | |
|     uncond_other = []
 | |
|     for t in range(len(conds)):
 | |
|         x = conds[t]
 | |
|         if 'area' not in x[1]:
 | |
|             if name in x[1] and x[1][name] is not None:
 | |
|                 cond_cnets.append(x[1][name])
 | |
|             else:
 | |
|                 cond_other.append((x, t))
 | |
|     for t in range(len(uncond)):
 | |
|         x = uncond[t]
 | |
|         if 'area' not in x[1]:
 | |
|             if name in x[1] and x[1][name] is not None:
 | |
|                 uncond_cnets.append(x[1][name])
 | |
|             else:
 | |
|                 uncond_other.append((x, t))
 | |
| 
 | |
|     if len(uncond_cnets) > 0:
 | |
|         return
 | |
| 
 | |
|     for x in range(len(cond_cnets)):
 | |
|         temp = uncond_other[x % len(uncond_other)]
 | |
|         o = temp[0]
 | |
|         if name in o[1] and o[1][name] is not None:
 | |
|             n = o[1].copy()
 | |
|             n[name] = uncond_fill_func(cond_cnets, x)
 | |
|             uncond += [[o[0], n]]
 | |
|         else:
 | |
|             n = o[1].copy()
 | |
|             n[name] = uncond_fill_func(cond_cnets, x)
 | |
|             uncond[temp[1]] = [o[0], n]
 | |
| 
 | |
| def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
 | |
|     for t in range(len(conds)):
 | |
|         x = conds[t]
 | |
|         adm_out = None
 | |
|         if 'adm' in x[1]:
 | |
|             adm_out = x[1]["adm"]
 | |
|         else:
 | |
|             params = x[1].copy()
 | |
|             params["width"] = params.get("width", width * 8)
 | |
|             params["height"] = params.get("height", height * 8)
 | |
|             params["prompt_type"] = params.get("prompt_type", prompt_type)
 | |
|             adm_out = model.encode_adm(device=device, **params)
 | |
| 
 | |
|         if adm_out is not None:
 | |
|             x[1] = x[1].copy()
 | |
|             x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
 | |
| 
 | |
|     return conds
 | |
| 
 | |
| 
 | |
| class Sampler:
 | |
|     def sample(self):
 | |
|         pass
 | |
| 
 | |
|     def max_denoise(self, model_wrap, sigmas):
 | |
|         return math.isclose(float(model_wrap.sigma_max), float(sigmas[0]), rel_tol=1e-05)
 | |
| 
 | |
| class DDIM(Sampler):
 | |
|     def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
 | |
|         timesteps = []
 | |
|         for s in range(sigmas.shape[0]):
 | |
|             timesteps.insert(0, model_wrap.sigma_to_discrete_timestep(sigmas[s]))
 | |
|         noise_mask = None
 | |
|         if denoise_mask is not None:
 | |
|             noise_mask = 1.0 - denoise_mask
 | |
| 
 | |
|         ddim_callback = None
 | |
|         if callback is not None:
 | |
|             total_steps = len(timesteps) - 1
 | |
|             ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
 | |
| 
 | |
|         max_denoise = self.max_denoise(model_wrap, sigmas)
 | |
| 
 | |
|         ddim_sampler = DDIMSampler(model_wrap.inner_model.inner_model, device=noise.device)
 | |
|         ddim_sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
 | |
|         z_enc = ddim_sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(noise.device), noise=noise, max_denoise=max_denoise)
 | |
|         samples, _ = ddim_sampler.sample_custom(ddim_timesteps=timesteps,
 | |
|                                                 batch_size=noise.shape[0],
 | |
|                                                 shape=noise.shape[1:],
 | |
|                                                 verbose=False,
 | |
|                                                 eta=0.0,
 | |
|                                                 x_T=z_enc,
 | |
|                                                 x0=latent_image,
 | |
|                                                 img_callback=ddim_callback,
 | |
|                                                 denoise_function=model_wrap.predict_eps_discrete_timestep,
 | |
|                                                 extra_args=extra_args,
 | |
|                                                 mask=noise_mask,
 | |
|                                                 to_zero=sigmas[-1]==0,
 | |
|                                                 end_step=sigmas.shape[0] - 1,
 | |
|                                                 disable_pbar=disable_pbar)
 | |
|         return samples
 | |
| 
 | |
| class UNIPC(Sampler):
 | |
|     def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
 | |
|         return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
 | |
| 
 | |
| class UNIPCBH2(Sampler):
 | |
|     def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
 | |
|         return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
 | |
| 
 | |
| KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
 | |
|                   "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
 | |
|                   "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm"]
 | |
| 
 | |
| def ksampler(sampler_name, extra_options={}):
 | |
|     class KSAMPLER(Sampler):
 | |
|         def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
 | |
|             extra_args["denoise_mask"] = denoise_mask
 | |
|             model_k = KSamplerX0Inpaint(model_wrap)
 | |
|             model_k.latent_image = latent_image
 | |
|             model_k.noise = noise
 | |
| 
 | |
|             if self.max_denoise(model_wrap, sigmas):
 | |
|                 noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
 | |
|             else:
 | |
|                 noise = noise * sigmas[0]
 | |
| 
 | |
|             k_callback = None
 | |
|             total_steps = len(sigmas) - 1
 | |
|             if callback is not None:
 | |
|                 k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
 | |
| 
 | |
|             sigma_min = sigmas[-1]
 | |
|             if sigma_min == 0:
 | |
|                 sigma_min = sigmas[-2]
 | |
| 
 | |
|             if latent_image is not None:
 | |
|                 noise += latent_image
 | |
|             if sampler_name == "dpm_fast":
 | |
|                 samples = k_diffusion_sampling.sample_dpm_fast(model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | |
|             elif sampler_name == "dpm_adaptive":
 | |
|                 samples = k_diffusion_sampling.sample_dpm_adaptive(model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | |
|             else:
 | |
|                 samples = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **extra_options)
 | |
|             return samples
 | |
|     return KSAMPLER
 | |
| 
 | |
| def wrap_model(model):
 | |
|     model_denoise = CFGNoisePredictor(model)
 | |
|     if model.model_type == model_base.ModelType.V_PREDICTION:
 | |
|         model_wrap = CompVisVDenoiser(model_denoise, quantize=True)
 | |
|     else:
 | |
|         model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise, quantize=True)
 | |
|     return model_wrap
 | |
| 
 | |
| def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
 | |
|     positive = positive[:]
 | |
|     negative = negative[:]
 | |
| 
 | |
|     resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
 | |
|     resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)
 | |
| 
 | |
|     model_wrap = wrap_model(model)
 | |
| 
 | |
|     calculate_start_end_timesteps(model_wrap, negative)
 | |
|     calculate_start_end_timesteps(model_wrap, positive)
 | |
| 
 | |
|     #make sure each cond area has an opposite one with the same area
 | |
|     for c in positive:
 | |
|         create_cond_with_same_area_if_none(negative, c)
 | |
|     for c in negative:
 | |
|         create_cond_with_same_area_if_none(positive, c)
 | |
| 
 | |
|     pre_run_control(model_wrap, negative + positive)
 | |
| 
 | |
|     apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
 | |
|     apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
 | |
| 
 | |
|     if model.is_adm():
 | |
|         positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
 | |
|         negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")
 | |
| 
 | |
|     if latent_image is not None:
 | |
|         latent_image = model.process_latent_in(latent_image)
 | |
| 
 | |
|     extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
 | |
| 
 | |
|     cond_concat = None
 | |
|     if hasattr(model, 'concat_keys'): #inpaint
 | |
|         cond_concat = []
 | |
|         for ck in model.concat_keys:
 | |
|             if denoise_mask is not None:
 | |
|                 if ck == "mask":
 | |
|                     cond_concat.append(denoise_mask[:,:1])
 | |
|                 elif ck == "masked_image":
 | |
|                     cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
 | |
|             else:
 | |
|                 if ck == "mask":
 | |
|                     cond_concat.append(torch.ones_like(noise)[:,:1])
 | |
|                 elif ck == "masked_image":
 | |
|                     cond_concat.append(blank_inpaint_image_like(noise))
 | |
|         extra_args["cond_concat"] = cond_concat
 | |
| 
 | |
|     samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
 | |
|     return model.process_latent_out(samples.to(torch.float32))
 | |
| 
 | |
| SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
 | |
| SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
 | |
| 
 | |
| def calculate_sigmas_scheduler(model, scheduler_name, steps):
 | |
|     model_wrap = wrap_model(model)
 | |
|     if scheduler_name == "karras":
 | |
|         sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
 | |
|     elif scheduler_name == "exponential":
 | |
|         sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
 | |
|     elif scheduler_name == "normal":
 | |
|         sigmas = model_wrap.get_sigmas(steps)
 | |
|     elif scheduler_name == "simple":
 | |
|         sigmas = simple_scheduler(model_wrap, steps)
 | |
|     elif scheduler_name == "ddim_uniform":
 | |
|         sigmas = ddim_scheduler(model_wrap, steps)
 | |
|     elif scheduler_name == "sgm_uniform":
 | |
|         sigmas = sgm_scheduler(model_wrap, steps)
 | |
|     else:
 | |
|         print("error invalid scheduler", self.scheduler)
 | |
|     return sigmas
 | |
| 
 | |
| def sampler_class(name):
 | |
|     if name == "uni_pc":
 | |
|         sampler = UNIPC
 | |
|     elif name == "uni_pc_bh2":
 | |
|         sampler = UNIPCBH2
 | |
|     elif name == "ddim":
 | |
|         sampler = DDIM
 | |
|     else:
 | |
|         sampler = ksampler(name)
 | |
|     return sampler
 | |
| 
 | |
| class KSampler:
 | |
|     SCHEDULERS = SCHEDULER_NAMES
 | |
|     SAMPLERS = SAMPLER_NAMES
 | |
| 
 | |
|     def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
 | |
|         self.model = model
 | |
|         self.device = device
 | |
|         if scheduler not in self.SCHEDULERS:
 | |
|             scheduler = self.SCHEDULERS[0]
 | |
|         if sampler not in self.SAMPLERS:
 | |
|             sampler = self.SAMPLERS[0]
 | |
|         self.scheduler = scheduler
 | |
|         self.sampler = sampler
 | |
|         self.set_steps(steps, denoise)
 | |
|         self.denoise = denoise
 | |
|         self.model_options = model_options
 | |
| 
 | |
|     def calculate_sigmas(self, steps):
 | |
|         sigmas = None
 | |
| 
 | |
|         discard_penultimate_sigma = False
 | |
|         if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
 | |
|             steps += 1
 | |
|             discard_penultimate_sigma = True
 | |
| 
 | |
|         sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
 | |
| 
 | |
|         if discard_penultimate_sigma:
 | |
|             sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
 | |
|         return sigmas
 | |
| 
 | |
|     def set_steps(self, steps, denoise=None):
 | |
|         self.steps = steps
 | |
|         if denoise is None or denoise > 0.9999:
 | |
|             self.sigmas = self.calculate_sigmas(steps).to(self.device)
 | |
|         else:
 | |
|             new_steps = int(steps/denoise)
 | |
|             sigmas = self.calculate_sigmas(new_steps).to(self.device)
 | |
|             self.sigmas = sigmas[-(steps + 1):]
 | |
| 
 | |
|     def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
 | |
|         if sigmas is None:
 | |
|             sigmas = self.sigmas
 | |
| 
 | |
|         if last_step is not None and last_step < (len(sigmas) - 1):
 | |
|             sigmas = sigmas[:last_step + 1]
 | |
|             if force_full_denoise:
 | |
|                 sigmas[-1] = 0
 | |
| 
 | |
|         if start_step is not None:
 | |
|             if start_step < (len(sigmas) - 1):
 | |
|                 sigmas = sigmas[start_step:]
 | |
|             else:
 | |
|                 if latent_image is not None:
 | |
|                     return latent_image
 | |
|                 else:
 | |
|                     return torch.zeros_like(noise)
 | |
| 
 | |
|         sampler = sampler_class(self.sampler)
 | |
| 
 | |
|         return sample(self.model, noise, positive, negative, cfg, self.device, sampler(), sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
 |