* try improve colab * try improve colab * try improve colab * try improve colab * try improve colab * try improve colab
63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
import torch
|
||
import comfy.model_management as model_management
|
||
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, set_seed
|
||
from modules.path import fooocus_expansion_path
|
||
from comfy.sd import ModelPatcher
|
||
|
||
|
||
fooocus_magic_split = [
|
||
', extremely',
|
||
', intricate,',
|
||
]
|
||
dangrous_patterns = '[]【】()()|::'
|
||
|
||
|
||
def safe_str(x):
|
||
x = str(x)
|
||
for _ in range(16):
|
||
x = x.replace(' ', ' ')
|
||
return x.strip(",. \r\n")
|
||
|
||
|
||
def remove_pattern(x, pattern):
|
||
for p in pattern:
|
||
x = x.replace(p, '')
|
||
return x
|
||
|
||
|
||
class FooocusExpansion:
|
||
def __init__(self):
|
||
use_fp16 = model_management.should_use_fp16()
|
||
|
||
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
|
||
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
|
||
|
||
if use_fp16:
|
||
self.model.half()
|
||
|
||
load_device = model_management.text_encoder_device()
|
||
offload_device = model_management.text_encoder_offload_device()
|
||
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
|
||
|
||
self.pipe = pipeline('text-generation',
|
||
model=self.model,
|
||
tokenizer=self.tokenizer,
|
||
device='cpu',
|
||
torch_dtype=torch.float16 if use_fp16 else torch.float32)
|
||
|
||
print(f'Fooocus Expansion engine loaded.')
|
||
|
||
def __call__(self, prompt, seed):
|
||
model_management.load_model_gpu(self.patcher)
|
||
self.pipe.device = self.patcher.load_device
|
||
seed = int(seed)
|
||
set_seed(seed)
|
||
origin = safe_str(prompt)
|
||
prompt = origin + fooocus_magic_split[seed % len(fooocus_magic_split)]
|
||
response = self.pipe(prompt, max_length=len(prompt) + 256)
|
||
result = response[0]['generated_text'][len(origin):]
|
||
result = safe_str(result)
|
||
result = remove_pattern(result, dangrous_patterns)
|
||
return result
|