119 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
import fcbh.model_management
 | 
						|
import fcbh.samplers
 | 
						|
import fcbh.conds
 | 
						|
import fcbh.utils
 | 
						|
import math
 | 
						|
import numpy as np
 | 
						|
 | 
						|
def prepare_noise(latent_image, seed, noise_inds=None):
 | 
						|
    """
 | 
						|
    creates random noise given a latent image and a seed.
 | 
						|
    optional arg skip can be used to skip and discard x number of noise generations for a given seed
 | 
						|
    """
 | 
						|
    generator = torch.manual_seed(seed)
 | 
						|
    if noise_inds is None:
 | 
						|
        return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
 | 
						|
    
 | 
						|
    unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
 | 
						|
    noises = []
 | 
						|
    for i in range(unique_inds[-1]+1):
 | 
						|
        noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
 | 
						|
        if i in unique_inds:
 | 
						|
            noises.append(noise)
 | 
						|
    noises = [noises[i] for i in inverse]
 | 
						|
    noises = torch.cat(noises, axis=0)
 | 
						|
    return noises
 | 
						|
 | 
						|
def prepare_mask(noise_mask, shape, device):
 | 
						|
    """ensures noise mask is of proper dimensions"""
 | 
						|
    noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
 | 
						|
    noise_mask = noise_mask.round()
 | 
						|
    noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
 | 
						|
    noise_mask = fcbh.utils.repeat_to_batch_size(noise_mask, shape[0])
 | 
						|
    noise_mask = noise_mask.to(device)
 | 
						|
    return noise_mask
 | 
						|
 | 
						|
def get_models_from_cond(cond, model_type):
 | 
						|
    models = []
 | 
						|
    for c in cond:
 | 
						|
        if model_type in c:
 | 
						|
            models += [c[model_type]]
 | 
						|
    return models
 | 
						|
 | 
						|
def convert_cond(cond):
 | 
						|
    out = []
 | 
						|
    for c in cond:
 | 
						|
        temp = c[1].copy()
 | 
						|
        model_conds = temp.get("model_conds", {})
 | 
						|
        if c[0] is not None:
 | 
						|
            model_conds["c_crossattn"] = fcbh.conds.CONDCrossAttn(c[0])
 | 
						|
        temp["model_conds"] = model_conds
 | 
						|
        out.append(temp)
 | 
						|
    return out
 | 
						|
 | 
						|
def get_additional_models(positive, negative, dtype):
 | 
						|
    """loads additional models in positive and negative conditioning"""
 | 
						|
    control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
 | 
						|
 | 
						|
    inference_memory = 0
 | 
						|
    control_models = []
 | 
						|
    for m in control_nets:
 | 
						|
        control_models += m.get_models()
 | 
						|
        inference_memory += m.inference_memory_requirements(dtype)
 | 
						|
 | 
						|
    gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
 | 
						|
    gligen = [x[1] for x in gligen]
 | 
						|
    models = control_models + gligen
 | 
						|
    return models, inference_memory
 | 
						|
 | 
						|
def cleanup_additional_models(models):
 | 
						|
    """cleanup additional models that were loaded"""
 | 
						|
    for m in models:
 | 
						|
        if hasattr(m, 'cleanup'):
 | 
						|
            m.cleanup()
 | 
						|
 | 
						|
def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
 | 
						|
    device = model.load_device
 | 
						|
    positive = convert_cond(positive)
 | 
						|
    negative = convert_cond(negative)
 | 
						|
 | 
						|
    if noise_mask is not None:
 | 
						|
        noise_mask = prepare_mask(noise_mask, noise_shape, device)
 | 
						|
 | 
						|
    real_model = None
 | 
						|
    models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
 | 
						|
    fcbh.model_management.load_models_gpu([model] + models, fcbh.model_management.batch_area_memory(noise_shape[0] * noise_shape[2] * noise_shape[3]) + inference_memory)
 | 
						|
    real_model = model.model
 | 
						|
 | 
						|
    return real_model, positive, negative, noise_mask, models
 | 
						|
 | 
						|
 | 
						|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
 | 
						|
    real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
 | 
						|
 | 
						|
    noise = noise.to(model.load_device)
 | 
						|
    latent_image = latent_image.to(model.load_device)
 | 
						|
 | 
						|
    sampler = fcbh.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
 | 
						|
 | 
						|
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
 | 
						|
    samples = samples.cpu()
 | 
						|
 | 
						|
    cleanup_additional_models(models)
 | 
						|
    cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
 | 
						|
    return samples
 | 
						|
 | 
						|
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
 | 
						|
    real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
 | 
						|
    noise = noise.to(model.load_device)
 | 
						|
    latent_image = latent_image.to(model.load_device)
 | 
						|
    sigmas = sigmas.to(model.load_device)
 | 
						|
 | 
						|
    samples = fcbh.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
 | 
						|
    samples = samples.cpu()
 | 
						|
    cleanup_additional_models(models)
 | 
						|
    cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
 | 
						|
    return samples
 | 
						|
 |