291 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from modules.patch import patch_all
 | |
| 
 | |
| patch_all()
 | |
| 
 | |
| 
 | |
| import os
 | |
| import einops
 | |
| import torch
 | |
| import numpy as np
 | |
| 
 | |
| import fcbh.model_management
 | |
| import fcbh.model_detection
 | |
| import fcbh.model_patcher
 | |
| import fcbh.utils
 | |
| import fcbh.controlnet
 | |
| import modules.sample_hijack
 | |
| import fcbh.samplers
 | |
| import fcbh.latent_formats
 | |
| 
 | |
| from fcbh.sd import load_checkpoint_guess_config
 | |
| from nodes import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, \
 | |
|     ControlNetApplyAdvanced
 | |
| from fcbh_extras.nodes_freelunch import FreeU_V2
 | |
| from fcbh.sample import prepare_mask
 | |
| from modules.patch import patched_sampler_cfg_function, patched_model_function_wrapper
 | |
| from fcbh.lora import model_lora_keys_unet, model_lora_keys_clip, load_lora
 | |
| from modules.path import embeddings_path
 | |
| 
 | |
| 
 | |
| opEmptyLatentImage = EmptyLatentImage()
 | |
| opVAEDecode = VAEDecode()
 | |
| opVAEEncode = VAEEncode()
 | |
| opVAEDecodeTiled = VAEDecodeTiled()
 | |
| opVAEEncodeTiled = VAEEncodeTiled()
 | |
| opControlNetApplyAdvanced = ControlNetApplyAdvanced()
 | |
| opFreeU = FreeU_V2()
 | |
| 
 | |
| 
 | |
| class StableDiffusionModel:
 | |
|     def __init__(self, unet, vae, clip, clip_vision):
 | |
|         self.unet = unet
 | |
|         self.vae = vae
 | |
|         self.clip = clip
 | |
|         self.clip_vision = clip_vision
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def apply_freeu(model, b1, b2, s1, s2):
 | |
|     return opFreeU.patch(model=model, b1=b1, b2=b2, s1=s1, s2=s2)[0]
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def load_controlnet(ckpt_filename):
 | |
|     return fcbh.controlnet.load_controlnet(ckpt_filename)
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent):
 | |
|     return opControlNetApplyAdvanced.apply_controlnet(positive=positive, negative=negative, control_net=control_net,
 | |
|         image=image, strength=strength, start_percent=start_percent, end_percent=end_percent)
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def load_model(ckpt_filename):
 | |
|     unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=embeddings_path)
 | |
|     unet.model_options['sampler_cfg_function'] = patched_sampler_cfg_function
 | |
|     unet.model_options['model_function_wrapper'] = patched_model_function_wrapper
 | |
|     return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision)
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def load_sd_lora(model, lora_filename, strength_model=1.0, strength_clip=1.0):
 | |
|     if strength_model == 0 and strength_clip == 0:
 | |
|         return model
 | |
| 
 | |
|     lora = fcbh.utils.load_torch_file(lora_filename, safe_load=False)
 | |
| 
 | |
|     if lora_filename.lower().endswith('.fooocus.patch'):
 | |
|         loaded = lora
 | |
|     else:
 | |
|         key_map = model_lora_keys_unet(model.unet.model)
 | |
|         key_map = model_lora_keys_clip(model.clip.cond_stage_model, key_map)
 | |
|         loaded = load_lora(lora, key_map)
 | |
| 
 | |
|     new_unet = model.unet.clone()
 | |
|     loaded_unet_keys = new_unet.add_patches(loaded, strength_model)
 | |
| 
 | |
|     new_clip = model.clip.clone()
 | |
|     loaded_clip_keys = new_clip.add_patches(loaded, strength_clip)
 | |
| 
 | |
|     loaded_keys = set(list(loaded_unet_keys) + list(loaded_clip_keys))
 | |
| 
 | |
|     for x in loaded:
 | |
|         if x not in loaded_keys:
 | |
|             print("Lora key not loaded: ", x)
 | |
| 
 | |
|     return StableDiffusionModel(unet=new_unet, clip=new_clip, vae=model.vae, clip_vision=model.clip_vision)
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def generate_empty_latent(width=1024, height=1024, batch_size=1):
 | |
|     return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def decode_vae(vae, latent_image, tiled=False):
 | |
|     if tiled:
 | |
|         return opVAEDecodeTiled.decode(samples=latent_image, vae=vae, tile_size=512)[0]
 | |
|     else:
 | |
|         return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def encode_vae(vae, pixels, tiled=False):
 | |
|     if tiled:
 | |
|         return opVAEEncodeTiled.encode(pixels=pixels, vae=vae, tile_size=512)[0]
 | |
|     else:
 | |
|         return opVAEEncode.encode(pixels=pixels, vae=vae)[0]
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def encode_vae_inpaint(vae, pixels, mask):
 | |
|     assert mask.ndim == 3 and pixels.ndim == 4
 | |
|     assert mask.shape[-1] == pixels.shape[-2]
 | |
|     assert mask.shape[-2] == pixels.shape[-3]
 | |
| 
 | |
|     w = mask.round()[..., None]
 | |
|     pixels = pixels * (1 - w) + 0.5 * w
 | |
| 
 | |
|     latent = vae.encode(pixels)
 | |
|     B, C, H, W = latent.shape
 | |
| 
 | |
|     latent_mask = mask[:, None, :, :]
 | |
|     latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round()
 | |
|     latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round()
 | |
| 
 | |
|     return latent, latent_mask
 | |
| 
 | |
| 
 | |
| class VAEApprox(torch.nn.Module):
 | |
|     def __init__(self):
 | |
|         super(VAEApprox, self).__init__()
 | |
|         self.conv1 = torch.nn.Conv2d(4, 8, (7, 7))
 | |
|         self.conv2 = torch.nn.Conv2d(8, 16, (5, 5))
 | |
|         self.conv3 = torch.nn.Conv2d(16, 32, (3, 3))
 | |
|         self.conv4 = torch.nn.Conv2d(32, 64, (3, 3))
 | |
|         self.conv5 = torch.nn.Conv2d(64, 32, (3, 3))
 | |
|         self.conv6 = torch.nn.Conv2d(32, 16, (3, 3))
 | |
|         self.conv7 = torch.nn.Conv2d(16, 8, (3, 3))
 | |
|         self.conv8 = torch.nn.Conv2d(8, 3, (3, 3))
 | |
|         self.current_type = None
 | |
| 
 | |
|     def forward(self, x):
 | |
|         extra = 11
 | |
|         x = torch.nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
 | |
|         x = torch.nn.functional.pad(x, (extra, extra, extra, extra))
 | |
|         for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8]:
 | |
|             x = layer(x)
 | |
|             x = torch.nn.functional.leaky_relu(x, 0.1)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| VAE_approx_models = {}
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def get_previewer(model):
 | |
|     global VAE_approx_models
 | |
| 
 | |
|     from modules.path import vae_approx_path
 | |
|     is_sdxl = isinstance(model.model.latent_format, fcbh.latent_formats.SDXL)
 | |
|     vae_approx_filename = os.path.join(vae_approx_path, 'xlvaeapp.pth' if is_sdxl else 'vaeapp_sd15.pth')
 | |
| 
 | |
|     if vae_approx_filename in VAE_approx_models:
 | |
|         VAE_approx_model = VAE_approx_models[vae_approx_filename]
 | |
|     else:
 | |
|         sd = torch.load(vae_approx_filename, map_location='cpu')
 | |
|         VAE_approx_model = VAEApprox()
 | |
|         VAE_approx_model.load_state_dict(sd)
 | |
|         del sd
 | |
|         VAE_approx_model.eval()
 | |
| 
 | |
|         if fcbh.model_management.should_use_fp16():
 | |
|             VAE_approx_model.half()
 | |
|             VAE_approx_model.current_type = torch.float16
 | |
|         else:
 | |
|             VAE_approx_model.float()
 | |
|             VAE_approx_model.current_type = torch.float32
 | |
| 
 | |
|         VAE_approx_model.to(fcbh.model_management.get_torch_device())
 | |
|         VAE_approx_models[vae_approx_filename] = VAE_approx_model
 | |
| 
 | |
|     @torch.no_grad()
 | |
|     @torch.inference_mode()
 | |
|     def preview_function(x0, step, total_steps):
 | |
|         with torch.no_grad():
 | |
|             x_sample = x0.to(VAE_approx_model.current_type)
 | |
|             x_sample = VAE_approx_model(x_sample) * 127.5 + 127.5
 | |
|             x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')[0]
 | |
|             x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8)
 | |
|             return x_sample
 | |
| 
 | |
|     return preview_function
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
 | |
|              scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
 | |
|              force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1,
 | |
|              previewer_start=None, previewer_end=None, sigmas=None, noise_mean=None):
 | |
| 
 | |
|     if sigmas is not None:
 | |
|         sigmas = sigmas.clone().to(fcbh.model_management.get_torch_device())
 | |
| 
 | |
|     latent_image = latent["samples"]
 | |
| 
 | |
|     if disable_noise:
 | |
|         noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
 | |
|     else:
 | |
|         batch_inds = latent["batch_index"] if "batch_index" in latent else None
 | |
|         noise = fcbh.sample.prepare_noise(latent_image, seed, batch_inds)
 | |
| 
 | |
|     if isinstance(noise_mean, torch.Tensor):
 | |
|         noise = noise + noise_mean - torch.mean(noise, dim=1, keepdim=True)
 | |
| 
 | |
|     noise_mask = None
 | |
|     if "noise_mask" in latent:
 | |
|         noise_mask = latent["noise_mask"]
 | |
| 
 | |
|     previewer = get_previewer(model)
 | |
| 
 | |
|     if previewer_start is None:
 | |
|         previewer_start = 0
 | |
| 
 | |
|     if previewer_end is None:
 | |
|         previewer_end = steps
 | |
| 
 | |
|     def callback(step, x0, x, total_steps):
 | |
|         fcbh.model_management.throw_exception_if_processing_interrupted()
 | |
|         y = None
 | |
|         if previewer is not None:
 | |
|             y = previewer(x0, previewer_start + step, previewer_end)
 | |
|         if callback_function is not None:
 | |
|             callback_function(previewer_start + step, x0, x, previewer_end, y)
 | |
| 
 | |
|     disable_pbar = False
 | |
|     modules.sample_hijack.current_refiner = refiner
 | |
|     modules.sample_hijack.refiner_switch_step = refiner_switch
 | |
|     fcbh.samplers.sample = modules.sample_hijack.sample_hacked
 | |
| 
 | |
|     try:
 | |
|         samples = fcbh.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
 | |
|                                       denoise=denoise, disable_noise=disable_noise, start_step=start_step,
 | |
|                                       last_step=last_step,
 | |
|                                       force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback,
 | |
|                                       disable_pbar=disable_pbar, seed=seed, sigmas=sigmas)
 | |
| 
 | |
|         out = latent.copy()
 | |
|         out["samples"] = samples
 | |
|     finally:
 | |
|         modules.sample_hijack.current_refiner = None
 | |
| 
 | |
|     return out
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def pytorch_to_numpy(x):
 | |
|     return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| @torch.inference_mode()
 | |
| def numpy_to_pytorch(x):
 | |
|     y = x.astype(np.float32) / 255.0
 | |
|     y = y[None]
 | |
|     y = np.ascontiguousarray(y.copy())
 | |
|     y = torch.from_numpy(y).float()
 | |
|     return y
 |