118 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils
 | 
						|
from .utils import load_torch_file, transformers_convert
 | 
						|
import os
 | 
						|
import torch
 | 
						|
import contextlib
 | 
						|
 | 
						|
import fcbh.ops
 | 
						|
import fcbh.model_patcher
 | 
						|
import fcbh.model_management
 | 
						|
 | 
						|
class ClipVisionModel():
 | 
						|
    def __init__(self, json_config):
 | 
						|
        config = CLIPVisionConfig.from_json_file(json_config)
 | 
						|
        self.load_device = fcbh.model_management.text_encoder_device()
 | 
						|
        offload_device = fcbh.model_management.text_encoder_offload_device()
 | 
						|
        self.dtype = torch.float32
 | 
						|
        if fcbh.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
 | 
						|
            self.dtype = torch.float16
 | 
						|
 | 
						|
        with fcbh.ops.use_fcbh_ops(offload_device, self.dtype):
 | 
						|
            with modeling_utils.no_init_weights():
 | 
						|
                self.model = CLIPVisionModelWithProjection(config)
 | 
						|
        self.model.to(self.dtype)
 | 
						|
 | 
						|
        self.patcher = fcbh.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
 | 
						|
        self.processor = CLIPImageProcessor(crop_size=224,
 | 
						|
                                            do_center_crop=True,
 | 
						|
                                            do_convert_rgb=True,
 | 
						|
                                            do_normalize=True,
 | 
						|
                                            do_resize=True,
 | 
						|
                                            image_mean=[ 0.48145466,0.4578275,0.40821073],
 | 
						|
                                            image_std=[0.26862954,0.26130258,0.27577711],
 | 
						|
                                            resample=3, #bicubic
 | 
						|
                                            size=224)
 | 
						|
 | 
						|
    def load_sd(self, sd):
 | 
						|
        return self.model.load_state_dict(sd, strict=False)
 | 
						|
 | 
						|
    def encode_image(self, image):
 | 
						|
        img = torch.clip((255. * image), 0, 255).round().int()
 | 
						|
        img = list(map(lambda a: a, img))
 | 
						|
        inputs = self.processor(images=img, return_tensors="pt")
 | 
						|
        fcbh.model_management.load_model_gpu(self.patcher)
 | 
						|
        pixel_values = inputs['pixel_values'].to(self.load_device)
 | 
						|
 | 
						|
        if self.dtype != torch.float32:
 | 
						|
            precision_scope = torch.autocast
 | 
						|
        else:
 | 
						|
            precision_scope = lambda a, b: contextlib.nullcontext(a)
 | 
						|
 | 
						|
        with precision_scope(fcbh.model_management.get_autocast_device(self.load_device), torch.float32):
 | 
						|
            outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
 | 
						|
 | 
						|
        for k in outputs:
 | 
						|
            t = outputs[k]
 | 
						|
            if t is not None:
 | 
						|
                if k == 'hidden_states':
 | 
						|
                    outputs["penultimate_hidden_states"] = t[-2].cpu()
 | 
						|
                    outputs["hidden_states"] = None
 | 
						|
                else:
 | 
						|
                    outputs[k] = t.cpu()
 | 
						|
 | 
						|
        return outputs
 | 
						|
 | 
						|
def convert_to_transformers(sd, prefix):
 | 
						|
    sd_k = sd.keys()
 | 
						|
    if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
 | 
						|
        keys_to_replace = {
 | 
						|
            "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
 | 
						|
            "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
 | 
						|
            "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
 | 
						|
            "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
 | 
						|
            "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
 | 
						|
            "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
 | 
						|
            "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
 | 
						|
        }
 | 
						|
 | 
						|
        for x in keys_to_replace:
 | 
						|
            if x in sd_k:
 | 
						|
                sd[keys_to_replace[x]] = sd.pop(x)
 | 
						|
 | 
						|
        if "{}proj".format(prefix) in sd_k:
 | 
						|
            sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
 | 
						|
 | 
						|
        sd = transformers_convert(sd, prefix, "vision_model.", 48)
 | 
						|
    return sd
 | 
						|
 | 
						|
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
 | 
						|
    if convert_keys:
 | 
						|
        sd = convert_to_transformers(sd, prefix)
 | 
						|
    if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
 | 
						|
        json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
 | 
						|
    elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
 | 
						|
        json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
 | 
						|
    elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
 | 
						|
        json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
 | 
						|
    else:
 | 
						|
        return None
 | 
						|
 | 
						|
    clip = ClipVisionModel(json_config)
 | 
						|
    m, u = clip.load_sd(sd)
 | 
						|
    if len(m) > 0:
 | 
						|
        print("missing clip vision:", m)
 | 
						|
    u = set(u)
 | 
						|
    keys = list(sd.keys())
 | 
						|
    for k in keys:
 | 
						|
        if k not in u:
 | 
						|
            t = sd.pop(k)
 | 
						|
            del t
 | 
						|
    return clip
 | 
						|
 | 
						|
def load(ckpt_path):
 | 
						|
    sd = load_torch_file(ckpt_path)
 | 
						|
    if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
 | 
						|
        return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
 | 
						|
    else:
 | 
						|
        return load_clipvision_from_sd(sd)
 |