* Rework many patches and some UI details. * Speed up processing. * Move Colab to independent branch. * Implemented CFG Scale and TSNR correction when CFG is bigger than 10. * Implemented Developer Mode with more options to debug.
		
			
				
	
	
		
			224 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import numpy as np
 | |
| import modules.default_pipeline as pipeline
 | |
| 
 | |
| from PIL import Image, ImageFilter
 | |
| from modules.util import resample_image
 | |
| 
 | |
| 
 | |
| inpaint_head = None
 | |
| 
 | |
| 
 | |
| class InpaintHead(torch.nn.Module):
 | |
|     def __init__(self, *args, **kwargs):
 | |
|         super().__init__(*args, **kwargs)
 | |
|         self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))
 | |
| 
 | |
|     def __call__(self, x):
 | |
|         x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
 | |
|         return torch.nn.functional.conv2d(input=x, weight=self.head)
 | |
| 
 | |
| 
 | |
| current_task = None
 | |
| 
 | |
| 
 | |
| def box_blur(x, k):
 | |
|     x = Image.fromarray(x)
 | |
|     x = x.filter(ImageFilter.BoxBlur(k))
 | |
|     return np.array(x)
 | |
| 
 | |
| 
 | |
| def max33(x):
 | |
|     x = Image.fromarray(x)
 | |
|     x = x.filter(ImageFilter.MaxFilter(3))
 | |
|     return np.array(x)
 | |
| 
 | |
| 
 | |
| def morphological_open(x):
 | |
|     x_int32 = np.zeros_like(x).astype(np.int32)
 | |
|     x_int32[x > 127] = 256
 | |
|     for _ in range(32):
 | |
|         maxed = max33(x_int32) - 8
 | |
|         x_int32 = np.maximum(maxed, x_int32)
 | |
|     return x_int32.clip(0, 255).astype(np.uint8)
 | |
| 
 | |
| 
 | |
| def imsave(x, path):
 | |
|     x = Image.fromarray(x)
 | |
|     x.save(path)
 | |
| 
 | |
| 
 | |
| def regulate_abcd(x, a, b, c, d):
 | |
|     H, W = x.shape[:2]
 | |
|     if a < 0:
 | |
|         a = 0
 | |
|     if a > H:
 | |
|         a = H
 | |
|     if b < 0:
 | |
|         b = 0
 | |
|     if b > H:
 | |
|         b = H
 | |
|     if c < 0:
 | |
|         c = 0
 | |
|     if c > W:
 | |
|         c = W
 | |
|     if d < 0:
 | |
|         d = 0
 | |
|     if d > W:
 | |
|         d = W
 | |
|     return int(a), int(b), int(c), int(d)
 | |
| 
 | |
| 
 | |
| def compute_initial_abcd(x):
 | |
|     indices = np.where(x)
 | |
|     a = np.min(indices[0]) - 64
 | |
|     b = np.max(indices[0]) + 65
 | |
|     c = np.min(indices[1]) - 64
 | |
|     d = np.max(indices[1]) + 65
 | |
|     a, b, c, d = regulate_abcd(x, a, b, c, d)
 | |
|     return a, b, c, d
 | |
| 
 | |
| 
 | |
| def area_abcd(a, b, c, d):
 | |
|     return (b - a) * (d - c)
 | |
| 
 | |
| 
 | |
| def solve_abcd(x, a, b, c, d, k, outpaint):
 | |
|     H, W = x.shape[:2]
 | |
|     if outpaint:
 | |
|         return 0, H, 0, W
 | |
|     min_area = H * W * k
 | |
|     max_area = H * W
 | |
|     while True:
 | |
|         if area_abcd(a, b, c, d) > min_area and abs((b - a) - (d - c)) < 16:
 | |
|             break
 | |
|         if area_abcd(a, b, c, d) >= max_area:
 | |
|             break
 | |
| 
 | |
|         add_h = (b - a) < (d - c)
 | |
|         add_w = not add_h
 | |
| 
 | |
|         if b - a == H:
 | |
|             add_w = True
 | |
| 
 | |
|         if d - c == W:
 | |
|             add_h = True
 | |
| 
 | |
|         if add_h:
 | |
|             a -= 1
 | |
|             b += 1
 | |
| 
 | |
|         if add_w:
 | |
|             c -= 1
 | |
|             d += 1
 | |
| 
 | |
|         a, b, c, d = regulate_abcd(x, a, b, c, d)
 | |
|     return a, b, c, d
 | |
| 
 | |
| 
 | |
| def fooocus_fill(image, mask):
 | |
|     current_image = image.copy()
 | |
|     raw_image = image.copy()
 | |
|     area = np.where(mask < 127)
 | |
|     store = raw_image[area]
 | |
| 
 | |
|     for k, repeats in [(64, 4), (32, 4), (16, 4), (4, 4), (2, 4)]:
 | |
|         for _ in range(repeats):
 | |
|             current_image = box_blur(current_image, k)
 | |
|             current_image[area] = store
 | |
| 
 | |
|     return current_image
 | |
| 
 | |
| 
 | |
| class InpaintWorker:
 | |
|     def __init__(self, image, mask, is_outpaint):
 | |
|         # mask processing
 | |
|         self.mask_raw_soft = morphological_open(mask)
 | |
|         self.mask_raw_fg = (self.mask_raw_soft == 255).astype(np.uint8) * 255
 | |
|         self.mask_raw_bg = (self.mask_raw_soft == 0).astype(np.uint8) * 255
 | |
|         self.mask_raw_trim = 255 - np.maximum(self.mask_raw_fg, self.mask_raw_bg)
 | |
| 
 | |
|         # image processing
 | |
|         self.image_raw = fooocus_fill(image, self.mask_raw_fg)
 | |
| 
 | |
|         # log all images
 | |
|         # imsave(self.image_raw, 'image_raw.png')
 | |
|         # imsave(self.mask_raw_soft, 'mask_raw_soft.png')
 | |
|         # imsave(self.mask_raw_fg, 'mask_raw_fg.png')
 | |
|         # imsave(self.mask_raw_bg, 'mask_raw_bg.png')
 | |
|         # imsave(self.mask_raw_trim, 'mask_raw_trim.png')
 | |
| 
 | |
|         # compute abcd
 | |
|         a, b, c, d = compute_initial_abcd(self.mask_raw_bg < 127)
 | |
|         a, b, c, d = solve_abcd(self.mask_raw_bg, a, b, c, d, k=0.618, outpaint=is_outpaint)
 | |
| 
 | |
|         # interested area
 | |
|         self.interested_area = (a, b, c, d)
 | |
|         self.mask_interested_soft = self.mask_raw_soft[a:b, c:d]
 | |
|         self.mask_interested_fg = self.mask_raw_fg[a:b, c:d]
 | |
|         self.mask_interested_bg = self.mask_raw_bg[a:b, c:d]
 | |
|         self.mask_interested_trim = self.mask_raw_trim[a:b, c:d]
 | |
|         self.image_interested = self.image_raw[a:b, c:d]
 | |
| 
 | |
|         # resize to make images ready for diffusion
 | |
|         H, W, C = self.image_interested.shape
 | |
|         k = (1024.0 ** 2.0 / float(H * W)) ** 0.5
 | |
|         H = int(np.ceil(float(H) * k / 16.0)) * 16
 | |
|         W = int(np.ceil(float(W) * k / 16.0)) * 16
 | |
|         self.image_ready = resample_image(self.image_interested, W, H)
 | |
|         self.mask_ready = resample_image(self.mask_interested_soft, W, H)
 | |
| 
 | |
|         # ending
 | |
|         self.latent = None
 | |
|         self.latent_mask = None
 | |
|         self.inpaint_head_feature = None
 | |
|         return
 | |
| 
 | |
|     def load_inpaint_guidance(self, latent, mask, model_path):
 | |
|         global inpaint_head
 | |
|         if inpaint_head is None:
 | |
|             inpaint_head = InpaintHead()
 | |
|             sd = torch.load(model_path, map_location='cpu')
 | |
|             inpaint_head.load_state_dict(sd)
 | |
|         process_latent_in = pipeline.xl_base_patched.unet.model.process_latent_in
 | |
| 
 | |
|         latent = process_latent_in(latent)
 | |
|         B, C, H, W = latent.shape
 | |
| 
 | |
|         mask = torch.nn.functional.interpolate(mask, size=(H, W), mode="bilinear")
 | |
|         mask = mask.round()
 | |
| 
 | |
|         feed = torch.cat([mask, latent], dim=1)
 | |
| 
 | |
|         inpaint_head.to(device=feed.device, dtype=feed.dtype)
 | |
|         self.inpaint_head_feature = inpaint_head(feed)
 | |
|         return
 | |
| 
 | |
|     def load_latent(self, latent, mask):
 | |
|         self.latent = latent
 | |
|         self.latent_mask = mask
 | |
| 
 | |
|     def color_correction(self, img):
 | |
|         fg = img.astype(np.float32)
 | |
|         bg = self.image_raw.copy().astype(np.float32)
 | |
|         w = self.mask_raw_soft[:, :, None].astype(np.float32) / 255.0
 | |
|         y = fg * w + bg * (1 - w)
 | |
|         return y.clip(0, 255).astype(np.uint8)
 | |
| 
 | |
|     def post_process(self, img):
 | |
|         a, b, c, d = self.interested_area
 | |
|         content = resample_image(img, d - c, b - a)
 | |
|         result = self.image_raw.copy()
 | |
|         result[a:b, c:d] = content
 | |
|         result = self.color_correction(result)
 | |
|         return result
 | |
| 
 | |
|     def visualize_mask_processing(self):
 | |
|         result = self.image_raw // 4
 | |
|         a, b, c, d = self.interested_area
 | |
|         result[a:b, c:d] += 64
 | |
|         result[self.mask_raw_trim > 127] += 64
 | |
|         result[self.mask_raw_fg > 127] += 128
 | |
|         return [result, self.mask_raw_soft, self.image_ready, self.mask_ready]
 | |
| 
 |