Fooocus/modules/path.py
lllyasviel 76120e045e update model list
Note that this only influence new users with new downloads
Previous users will not be forced to download new files, because this is not friendly and should be avoided.
delete user_path_config.txt to receive this new list
2023-10-28 16:20:11 -07:00

305 lines
11 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import json
import args_manager
import modules.flags
import modules.sdxl_styles
from modules.model_loader import load_file_from_url
from modules.util import get_files_from_folder
config_path = "user_path_config.txt"
config_dict = {}
visited_keys = []
try:
if os.path.exists(config_path):
with open(config_path, "r", encoding="utf-8") as json_file:
config_dict = json.load(json_file)
except Exception as e:
print('Load path config failed')
print(e)
preset = args_manager.args.preset
if isinstance(preset, str):
preset = os.path.abspath(f'./presets/{preset}.json')
try:
if os.path.exists(preset):
with open(preset, "r", encoding="utf-8") as json_file:
preset = json.load(json_file)
except Exception as e:
print('Load preset config failed')
print(e)
preset = preset if isinstance(preset, dict) else None
if preset is not None:
config_dict.update(preset)
def get_dir_or_set_default(key, default_value):
global config_dict, visited_keys
visited_keys.append(key)
v = config_dict.get(key, None)
if isinstance(v, str) and os.path.exists(v) and os.path.isdir(v):
return v
else:
dp = os.path.abspath(os.path.join(os.path.dirname(__file__), default_value))
os.makedirs(dp, exist_ok=True)
config_dict[key] = dp
return dp
modelfile_path = get_dir_or_set_default('modelfile_path', '../models/checkpoints/')
lorafile_path = get_dir_or_set_default('lorafile_path', '../models/loras/')
embeddings_path = get_dir_or_set_default('embeddings_path', '../models/embeddings/')
vae_approx_path = get_dir_or_set_default('vae_approx_path', '../models/vae_approx/')
upscale_models_path = get_dir_or_set_default('upscale_models_path', '../models/upscale_models/')
inpaint_models_path = get_dir_or_set_default('inpaint_models_path', '../models/inpaint/')
controlnet_models_path = get_dir_or_set_default('controlnet_models_path', '../models/controlnet/')
clip_vision_models_path = get_dir_or_set_default('clip_vision_models_path', '../models/clip_vision/')
fooocus_expansion_path = get_dir_or_set_default('fooocus_expansion_path',
'../models/prompt_expansion/fooocus_expansion')
temp_outputs_path = get_dir_or_set_default('temp_outputs_path', '../outputs/')
def get_config_item_or_set_default(key, default_value, validator, disable_empty_as_none=False):
global config_dict, visited_keys
visited_keys.append(key)
if key not in config_dict:
config_dict[key] = default_value
return default_value
v = config_dict.get(key, None)
if not disable_empty_as_none:
if v is None or v == '':
v = 'None'
if validator(v):
return v
else:
config_dict[key] = default_value
return default_value
default_base_model_name = get_config_item_or_set_default(
key='default_model',
default_value='juggernautXL_version6Rundiffusion.safetensors',
validator=lambda x: isinstance(x, str)
)
default_refiner_model_name = get_config_item_or_set_default(
key='default_refiner',
default_value='None',
validator=lambda x: isinstance(x, str)
)
default_refiner_switch = get_config_item_or_set_default(
key='default_refiner_switch',
default_value=0.8,
validator=lambda x: isinstance(x, float)
)
default_lora_name = get_config_item_or_set_default(
key='default_lora',
default_value='sd_xl_offset_example-lora_1.0.safetensors',
validator=lambda x: isinstance(x, str)
)
default_lora_weight = get_config_item_or_set_default(
key='default_lora_weight',
default_value=0.1,
validator=lambda x: isinstance(x, float)
)
default_cfg_scale = get_config_item_or_set_default(
key='default_cfg_scale',
default_value=4.0,
validator=lambda x: isinstance(x, float)
)
default_sample_sharpness = get_config_item_or_set_default(
key='default_sample_sharpness',
default_value=2,
validator=lambda x: isinstance(x, float)
)
default_sampler = get_config_item_or_set_default(
key='default_sampler',
default_value='dpmpp_2m_sde_gpu',
validator=lambda x: x in modules.flags.sampler_list
)
default_scheduler = get_config_item_or_set_default(
key='default_scheduler',
default_value='karras',
validator=lambda x: x in modules.flags.scheduler_list
)
default_styles = get_config_item_or_set_default(
key='default_styles',
default_value=['Fooocus V2', 'Fooocus Enhance', 'Fooocus Sharp'],
validator=lambda x: isinstance(x, list) and all(y in modules.sdxl_styles.legal_style_names for y in x)
)
default_prompt_negative = get_config_item_or_set_default(
key='default_prompt_negative',
default_value='',
validator=lambda x: isinstance(x, str),
disable_empty_as_none=True
)
default_prompt = get_config_item_or_set_default(
key='default_prompt',
default_value='',
validator=lambda x: isinstance(x, str),
disable_empty_as_none=True
)
default_advanced_checkbox = get_config_item_or_set_default(
key='default_advanced_checkbox',
default_value=False,
validator=lambda x: isinstance(x, bool)
)
default_image_number = get_config_item_or_set_default(
key='default_image_number',
default_value=2,
validator=lambda x: isinstance(x, int) and x >= 1 and x <= 32
)
checkpoint_downloads = get_config_item_or_set_default(
key='checkpoint_downloads',
default_value={
'juggernautXL_version6Rundiffusion.safetensors':
'https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/juggernautXL_version6Rundiffusion.safetensors'
},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
lora_downloads = get_config_item_or_set_default(
key='lora_downloads',
default_value={
'sd_xl_offset_example-lora_1.0.safetensors':
'https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_offset_example-lora_1.0.safetensors'
},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
embeddings_downloads = get_config_item_or_set_default(
key='embeddings_downloads',
default_value={},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
)
available_aspect_ratios = get_config_item_or_set_default(
key='available_aspect_ratios',
default_value=['704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152', '896*1152', '896*1088', '960*1088', '960*1024', '1024*1024', '1024*960', '1088*960', '1088*896', '1152*896', '1152*832', '1216*832', '1280*768', '1344*768', '1344*704', '1408*704', '1472*704', '1536*640', '1600*640', '1664*576', '1728*576'],
validator=lambda x: isinstance(x, list) and all('*' in v for v in x) and len(x) > 1
)
default_aspect_ratio = get_config_item_or_set_default(
key='default_aspect_ratio',
default_value='1152*896' if '1152*896' in available_aspect_ratios else available_aspect_ratios[0],
validator=lambda x: x in available_aspect_ratios
)
if preset is None:
# Do not overwrite user config if preset is applied.
with open(config_path, "w", encoding="utf-8") as json_file:
json.dump({k: config_dict[k] for k in visited_keys}, json_file, indent=4)
os.makedirs(temp_outputs_path, exist_ok=True)
model_filenames = []
lora_filenames = []
available_aspect_ratios = [x.replace('*', '×') for x in available_aspect_ratios]
default_aspect_ratio = default_aspect_ratio.replace('*', '×')
def get_model_filenames(folder_path, name_filter=None):
return get_files_from_folder(folder_path, ['.pth', '.ckpt', '.bin', '.safetensors', '.fooocus.patch'], name_filter)
def update_all_model_names():
global model_filenames, lora_filenames
model_filenames = get_model_filenames(modelfile_path)
lora_filenames = get_model_filenames(lorafile_path)
return
def downloading_inpaint_models(v):
assert v in ['v1', 'v2.5']
load_file_from_url(
url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/fooocus_inpaint_head.pth',
model_dir=inpaint_models_path,
file_name='fooocus_inpaint_head.pth'
)
head_file = os.path.join(inpaint_models_path, 'fooocus_inpaint_head.pth')
patch_file = None
# load_file_from_url(
# url='https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetLama.pth',
# model_dir=inpaint_models_path,
# file_name='ControlNetLama.pth'
# )
# lama_file = os.path.join(inpaint_models_path, 'ControlNetLama.pth')
if v == 'v1':
load_file_from_url(
url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint.fooocus.patch',
model_dir=inpaint_models_path,
file_name='inpaint.fooocus.patch'
)
patch_file = os.path.join(inpaint_models_path, 'inpaint.fooocus.patch')
if v == 'v2.5':
load_file_from_url(
url='https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint_v25.fooocus.patch',
model_dir=inpaint_models_path,
file_name='inpaint_v25.fooocus.patch'
)
patch_file = os.path.join(inpaint_models_path, 'inpaint_v25.fooocus.patch')
return head_file, patch_file
def downloading_controlnet_canny():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/control-lora-canny-rank128.safetensors',
model_dir=controlnet_models_path,
file_name='control-lora-canny-rank128.safetensors'
)
return os.path.join(controlnet_models_path, 'control-lora-canny-rank128.safetensors')
def downloading_controlnet_cpds():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_xl_cpds_128.safetensors',
model_dir=controlnet_models_path,
file_name='fooocus_xl_cpds_128.safetensors'
)
return os.path.join(controlnet_models_path, 'fooocus_xl_cpds_128.safetensors')
def downloading_ip_adapters():
results = []
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/clip_vision_vit_h.safetensors',
model_dir=clip_vision_models_path,
file_name='clip_vision_vit_h.safetensors'
)
results += [os.path.join(clip_vision_models_path, 'clip_vision_vit_h.safetensors')]
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_ip_negative.safetensors',
model_dir=controlnet_models_path,
file_name='fooocus_ip_negative.safetensors'
)
results += [os.path.join(controlnet_models_path, 'fooocus_ip_negative.safetensors')]
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/ip-adapter-plus_sdxl_vit-h.bin',
model_dir=controlnet_models_path,
file_name='ip-adapter-plus_sdxl_vit-h.bin'
)
results += [os.path.join(controlnet_models_path, 'ip-adapter-plus_sdxl_vit-h.bin')]
return results
def downloading_upscale_model():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_upscaler_s409985e5.bin',
model_dir=upscale_models_path,
file_name='fooocus_upscaler_s409985e5.bin'
)
return os.path.join(upscale_models_path, 'fooocus_upscaler_s409985e5.bin')
update_all_model_names()