Fooocus/modules/inpaint_worker.py
2023-10-20 02:41:04 -07:00

244 lines
6.0 KiB
Python

import torch
import numpy as np
import modules.default_pipeline as pipeline
from PIL import Image, ImageFilter
from modules.util import resample_image, set_image_shape_ceil
inpaint_head = None
class InpaintHead(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))
def __call__(self, x):
x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
return torch.nn.functional.conv2d(input=x, weight=self.head)
current_task = None
def box_blur(x, k):
x = Image.fromarray(x)
x = x.filter(ImageFilter.BoxBlur(k))
return np.array(x)
def max33(x):
x = Image.fromarray(x)
x = x.filter(ImageFilter.MaxFilter(3))
return np.array(x)
def morphological_open(x):
x_int32 = np.zeros_like(x).astype(np.int32)
x_int32[x > 127] = 256
for _ in range(32):
maxed = max33(x_int32) - 8
x_int32 = np.maximum(maxed, x_int32)
return x_int32.clip(0, 255).astype(np.uint8)
def up255(x, t=0):
y = np.zeros_like(x).astype(np.uint8)
y[x > t] = 255
return y
def imsave(x, path):
x = Image.fromarray(x)
x.save(path)
def regulate_abcd(x, a, b, c, d):
H, W = x.shape[:2]
if a < 0:
a = 0
if a > H:
a = H
if b < 0:
b = 0
if b > H:
b = H
if c < 0:
c = 0
if c > W:
c = W
if d < 0:
d = 0
if d > W:
d = W
return int(a), int(b), int(c), int(d)
def compute_initial_abcd(x):
indices = np.where(x)
a = np.min(indices[0]) - 64
b = np.max(indices[0]) + 65
c = np.min(indices[1]) - 64
d = np.max(indices[1]) + 65
abp = (b + a) // 2
abm = (b - a) // 2
cdp = (d + c) // 2
cdm = (d - c) // 2
l = max(abm, cdm)
a = abp - l
b = abp + l
c = cdp - l
d = cdp + l
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def solve_abcd(x, a, b, c, d, outpaint):
H, W = x.shape[:2]
if outpaint:
return 0, H, 0, W
while True:
if b - a > H * 0.618 and d - c > W * 0.618:
break
add_h = (b - a) < (d - c)
add_w = not add_h
if b - a == H:
add_w = True
if d - c == W:
add_h = True
if add_h:
a -= 1
b += 1
if add_w:
c -= 1
d += 1
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def fooocus_fill(image, mask):
current_image = image.copy()
raw_image = image.copy()
area = np.where(mask < 127)
store = raw_image[area]
for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]:
for _ in range(repeats):
current_image = box_blur(current_image, k)
current_image[area] = store
return current_image
class InpaintWorker:
def __init__(self, image, mask, is_outpaint):
a, b, c, d = compute_initial_abcd(mask > 0)
a, b, c, d = solve_abcd(mask, a, b, c, d, outpaint=is_outpaint)
# interested area
self.interested_area = (a, b, c, d)
self.interested_mask = mask[a:b, c:d]
self.interested_image = image[a:b, c:d]
# resize to make images ready for diffusion
self.interested_image = set_image_shape_ceil(self.interested_image, 1024)
H, W, C = self.interested_image.shape
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
# soft pixels
self.mask = morphological_open(mask)
self.image = image
# ending
self.latent = None
self.latent_after_swap = None
self.swapped = False
self.latent_mask = None
self.inpaint_head_feature = None
return
def load_latent(self,
latent_fill,
latent_inpaint,
latent_mask,
latent_swap=None,
inpaint_head_model_path=None):
global inpaint_head
assert inpaint_head_model_path is not None
self.latent = latent_fill
self.latent_mask = latent_mask
self.latent_after_swap = latent_swap
if inpaint_head is None:
inpaint_head = InpaintHead()
sd = torch.load(inpaint_head_model_path, map_location='cpu')
inpaint_head.load_state_dict(sd)
feed = torch.cat([
latent_mask,
pipeline.xl_base_patched.unet.model.process_latent_in(latent_inpaint)
], dim=1)
inpaint_head.to(device=feed.device, dtype=feed.dtype)
self.inpaint_head_feature = inpaint_head(feed)
return
def swap(self):
if self.swapped:
return
if self.latent is None:
return
if self.latent_after_swap is None:
return
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
self.swapped = True
return
def unswap(self):
if not self.swapped:
return
if self.latent is None:
return
if self.latent_after_swap is None:
return
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
self.swapped = False
return
def color_correction(self, img):
fg = img.astype(np.float32)
bg = self.image.copy().astype(np.float32)
w = self.mask[:, :, None].astype(np.float32) / 255.0
y = fg * w + bg * (1 - w)
return y.clip(0, 255).astype(np.uint8)
def post_process(self, img):
a, b, c, d = self.interested_area
content = resample_image(img, d - c, b - a)
result = self.image.copy()
result[a:b, c:d] = content
result = self.color_correction(result)
return result
def visualize_mask_processing(self):
return [self.interested_fill, self.interested_mask, self.image, self.mask]