Fooocus/modules/async_worker.py

928 lines
40 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import threading
import re
from modules.patch import PatchSettings, patch_settings, patch_all
patch_all()
class AsyncTask:
def __init__(self, args):
self.args = args
self.yields = []
self.results = []
self.last_stop = False
self.processing = False
async_tasks = []
def worker():
global async_tasks
import os
import traceback
import math
import numpy as np
import cv2
import torch
import time
import shared
import random
import copy
import modules.default_pipeline as pipeline
import modules.core as core
import modules.flags as flags
import modules.config
import modules.patch
import ldm_patched.modules.model_management
import extras.preprocessors as preprocessors
import modules.inpaint_worker as inpaint_worker
import modules.constants as constants
import extras.ip_adapter as ip_adapter
import extras.face_crop
import fooocus_version
import args_manager
from modules.sdxl_styles import apply_style, apply_wildcards, fooocus_expansion, apply_arrays
from modules.private_logger import log
from extras.expansion import safe_str
from modules.util import remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, \
get_shape_ceil, resample_image, erode_or_dilate, ordinal_suffix, get_enabled_loras
from modules.upscaler import perform_upscale
from modules.flags import Performance
from modules.meta_parser import get_metadata_parser, MetadataScheme
pid = os.getpid()
print(f'Started worker with PID {pid}')
try:
async_gradio_app = shared.gradio_root
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
if async_gradio_app.share:
flag += f''' or {async_gradio_app.share_url}'''
print(flag)
except Exception as e:
print(e)
def progressbar(async_task, number, text):
print(f'[Fooocus] {text}')
async_task.yields.append(['preview', (number, text, None)])
def yield_result(async_task, imgs, do_not_show_finished_images=False):
if not isinstance(imgs, list):
imgs = [imgs]
async_task.results = async_task.results + imgs
if do_not_show_finished_images:
return
async_task.yields.append(['results', async_task.results])
return
def build_image_wall(async_task):
results = []
if len(async_task.results) < 2:
return
for img in async_task.results:
if isinstance(img, str) and os.path.exists(img):
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if not isinstance(img, np.ndarray):
return
if img.ndim != 3:
return
results.append(img)
H, W, C = results[0].shape
for img in results:
Hn, Wn, Cn = img.shape
if H != Hn:
return
if W != Wn:
return
if C != Cn:
return
cols = float(len(results)) ** 0.5
cols = int(math.ceil(cols))
rows = float(len(results)) / float(cols)
rows = int(math.ceil(rows))
wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8)
for y in range(rows):
for x in range(cols):
if y * cols + x < len(results):
img = results[y * cols + x]
wall[y * H:y * H + H, x * W:x * W + W, :] = img
# must use deep copy otherwise gradio is super laggy. Do not use list.append() .
async_task.results = async_task.results + [wall]
return
@torch.no_grad()
@torch.inference_mode()
def handler(async_task):
execution_start_time = time.perf_counter()
async_task.processing = True
args = async_task.args
args.reverse()
prompt = args.pop()
negative_prompt = args.pop()
style_selections = args.pop()
performance_selection = Performance(args.pop())
aspect_ratios_selection = args.pop()
image_number = args.pop()
output_format = args.pop()
image_seed = args.pop()
read_wildcards_in_order = args.pop()
sharpness = args.pop()
guidance_scale = args.pop()
base_model_name = args.pop()
refiner_model_name = args.pop()
refiner_switch = args.pop()
loras = get_enabled_loras([[bool(args.pop()), str(args.pop()), float(args.pop())] for _ in range(modules.config.default_max_lora_number)])
input_image_checkbox = args.pop()
current_tab = args.pop()
uov_method = args.pop()
uov_input_image = args.pop()
outpaint_selections = args.pop()
inpaint_input_image = args.pop()
inpaint_additional_prompt = args.pop()
inpaint_mask_image_upload = args.pop()
disable_preview = args.pop()
disable_intermediate_results = args.pop()
disable_seed_increment = args.pop()
adm_scaler_positive = args.pop()
adm_scaler_negative = args.pop()
adm_scaler_end = args.pop()
adaptive_cfg = args.pop()
sampler_name = args.pop()
scheduler_name = args.pop()
overwrite_step = args.pop()
overwrite_switch = args.pop()
overwrite_width = args.pop()
overwrite_height = args.pop()
overwrite_vary_strength = args.pop()
overwrite_upscale_strength = args.pop()
mixing_image_prompt_and_vary_upscale = args.pop()
mixing_image_prompt_and_inpaint = args.pop()
debugging_cn_preprocessor = args.pop()
skipping_cn_preprocessor = args.pop()
canny_low_threshold = args.pop()
canny_high_threshold = args.pop()
refiner_swap_method = args.pop()
controlnet_softness = args.pop()
freeu_enabled = args.pop()
freeu_b1 = args.pop()
freeu_b2 = args.pop()
freeu_s1 = args.pop()
freeu_s2 = args.pop()
debugging_inpaint_preprocessor = args.pop()
inpaint_disable_initial_latent = args.pop()
inpaint_engine = args.pop()
inpaint_strength = args.pop()
inpaint_respective_field = args.pop()
inpaint_mask_upload_checkbox = args.pop()
invert_mask_checkbox = args.pop()
inpaint_erode_or_dilate = args.pop()
save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
metadata_scheme = MetadataScheme(args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
cn_tasks = {x: [] for x in flags.ip_list}
for _ in range(flags.controlnet_image_count):
cn_img = args.pop()
cn_stop = args.pop()
cn_weight = args.pop()
cn_type = args.pop()
if cn_img is not None:
cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])
outpaint_selections = [o.lower() for o in outpaint_selections]
base_model_additional_loras = []
raw_style_selections = copy.deepcopy(style_selections)
uov_method = uov_method.lower()
if fooocus_expansion in style_selections:
use_expansion = True
style_selections.remove(fooocus_expansion)
else:
use_expansion = False
use_style = len(style_selections) > 0
if base_model_name == refiner_model_name:
print(f'Refiner disabled because base model and refiner are same.')
refiner_model_name = 'None'
steps = performance_selection.steps()
if performance_selection == Performance.EXTREME_SPEED:
print('Enter LCM mode.')
progressbar(async_task, 1, 'Downloading LCM components ...')
loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
if refiner_model_name != 'None':
print(f'Refiner disabled in LCM mode.')
refiner_model_name = 'None'
sampler_name = 'lcm'
scheduler_name = 'lcm'
sharpness = 0.0
guidance_scale = 1.0
adaptive_cfg = 1.0
refiner_switch = 1.0
adm_scaler_positive = 1.0
adm_scaler_negative = 1.0
adm_scaler_end = 0.0
elif performance_selection == Performance.LIGHTNING:
print('Enter Lightning mode.')
progressbar(async_task, 1, 'Downloading Lightning components ...')
loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)]
if refiner_model_name != 'None':
print(f'Refiner disabled in Lightning mode.')
refiner_model_name = 'None'
sampler_name = 'euler'
scheduler_name = 'sgm_uniform'
sharpness = 0.0
guidance_scale = 1.0
adaptive_cfg = 1.0
refiner_switch = 1.0
adm_scaler_positive = 1.0
adm_scaler_negative = 1.0
adm_scaler_end = 0.0
print(f'[Parameters] Adaptive CFG = {adaptive_cfg}')
print(f'[Parameters] Sharpness = {sharpness}')
print(f'[Parameters] ControlNet Softness = {controlnet_softness}')
print(f'[Parameters] ADM Scale = '
f'{adm_scaler_positive} : '
f'{adm_scaler_negative} : '
f'{adm_scaler_end}')
patch_settings[pid] = PatchSettings(
sharpness,
adm_scaler_end,
adm_scaler_positive,
adm_scaler_negative,
controlnet_softness,
adaptive_cfg
)
cfg_scale = float(guidance_scale)
print(f'[Parameters] CFG = {cfg_scale}')
initial_latent = None
denoising_strength = 1.0
tiled = False
width, height = aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
width, height = int(width), int(height)
skip_prompt_processing = False
inpaint_worker.current_task = None
inpaint_parameterized = inpaint_engine != 'None'
inpaint_image = None
inpaint_mask = None
inpaint_head_model_path = None
use_synthetic_refiner = False
controlnet_canny_path = None
controlnet_cpds_path = None
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None
seed = int(image_seed)
print(f'[Parameters] Seed = {seed}')
goals = []
tasks = []
if input_image_checkbox:
if (current_tab == 'uov' or (
current_tab == 'ip' and mixing_image_prompt_and_vary_upscale)) \
and uov_method != flags.disabled and uov_input_image is not None:
uov_input_image = HWC3(uov_input_image)
if 'vary' in uov_method:
goals.append('vary')
elif 'upscale' in uov_method:
goals.append('upscale')
if 'fast' in uov_method:
skip_prompt_processing = True
else:
steps = performance_selection.steps_uov()
progressbar(async_task, 1, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
if (current_tab == 'inpaint' or (
current_tab == 'ip' and mixing_image_prompt_and_inpaint)) \
and isinstance(inpaint_input_image, dict):
inpaint_image = inpaint_input_image['image']
inpaint_mask = inpaint_input_image['mask'][:, :, 0]
if inpaint_mask_upload_checkbox:
if isinstance(inpaint_mask_image_upload, np.ndarray):
if inpaint_mask_image_upload.ndim == 3:
H, W, C = inpaint_image.shape
inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H)
inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2)
inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255
inpaint_mask = np.maximum(inpaint_mask, inpaint_mask_image_upload)
if int(inpaint_erode_or_dilate) != 0:
inpaint_mask = erode_or_dilate(inpaint_mask, inpaint_erode_or_dilate)
if invert_mask_checkbox:
inpaint_mask = 255 - inpaint_mask
inpaint_image = HWC3(inpaint_image)
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
progressbar(async_task, 1, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
if inpaint_parameterized:
progressbar(async_task, 1, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
inpaint_engine)
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
if refiner_model_name == 'None':
use_synthetic_refiner = True
refiner_switch = 0.8
else:
inpaint_head_model_path, inpaint_patch_model_path = None, None
print(f'[Inpaint] Parameterized inpaint is disabled.')
if inpaint_additional_prompt != '':
if prompt == '':
prompt = inpaint_additional_prompt
else:
prompt = inpaint_additional_prompt + '\n' + prompt
goals.append('inpaint')
if current_tab == 'ip' or \
mixing_image_prompt_and_vary_upscale or \
mixing_image_prompt_and_inpaint:
goals.append('cn')
progressbar(async_task, 1, 'Downloading control models ...')
if len(cn_tasks[flags.cn_canny]) > 0:
controlnet_canny_path = modules.config.downloading_controlnet_canny()
if len(cn_tasks[flags.cn_cpds]) > 0:
controlnet_cpds_path = modules.config.downloading_controlnet_cpds()
if len(cn_tasks[flags.cn_ip]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip')
if len(cn_tasks[flags.cn_ip_face]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
'face')
progressbar(async_task, 1, 'Loading control models ...')
# Load or unload CNs
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path)
if overwrite_step > 0:
steps = overwrite_step
switch = int(round(steps * refiner_switch))
if overwrite_switch > 0:
switch = overwrite_switch
if overwrite_width > 0:
width = overwrite_width
if overwrite_height > 0:
height = overwrite_height
print(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}')
print(f'[Parameters] Steps = {steps} - {switch}')
progressbar(async_task, 1, 'Initializing ...')
if not skip_prompt_processing:
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='')
prompt = prompts[0]
negative_prompt = negative_prompts[0]
if prompt == '':
# disable expansion when empty since it is not meaningful and influences image prompt
use_expansion = False
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
progressbar(async_task, 3, 'Loading models ...')
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name,
loras=loras, base_model_additional_loras=base_model_additional_loras,
use_synthetic_refiner=use_synthetic_refiner)
progressbar(async_task, 3, 'Processing prompts ...')
tasks = []
for i in range(image_number):
if disable_seed_increment:
task_seed = seed % (constants.MAX_SEED + 1)
else:
task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future
task_prompt = apply_wildcards(prompt, task_rng, i, read_wildcards_in_order)
task_prompt = apply_arrays(task_prompt, i)
task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, read_wildcards_in_order)
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in extra_negative_prompts]
positive_basic_workloads = []
negative_basic_workloads = []
if use_style:
for s in style_selections:
p, n = apply_style(s, positive=task_prompt)
positive_basic_workloads = positive_basic_workloads + p
negative_basic_workloads = negative_basic_workloads + n
else:
positive_basic_workloads.append(task_prompt)
negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative.
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt)
tasks.append(dict(
task_seed=task_seed,
task_prompt=task_prompt,
task_negative_prompt=task_negative_prompt,
positive=positive_basic_workloads,
negative=negative_basic_workloads,
expansion='',
c=None,
uc=None,
positive_top_k=len(positive_basic_workloads),
negative_top_k=len(negative_basic_workloads),
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
))
if use_expansion:
for i, t in enumerate(tasks):
progressbar(async_task, 5, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] {expansion}')
t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
for i, t in enumerate(tasks):
progressbar(async_task, 7, f'Encoding positive #{i + 1} ...')
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
for i, t in enumerate(tasks):
if abs(float(cfg_scale) - 1.0) < 1e-4:
t['uc'] = pipeline.clone_cond(t['c'])
else:
progressbar(async_task, 10, f'Encoding negative #{i + 1} ...')
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
if len(goals) > 0:
progressbar(async_task, 13, 'Image processing ...')
if 'vary' in goals:
if 'subtle' in uov_method:
denoising_strength = 0.5
if 'strong' in uov_method:
denoising_strength = 0.85
if overwrite_vary_strength > 0:
denoising_strength = overwrite_vary_strength
shape_ceil = get_image_shape_ceil(uov_input_image)
if shape_ceil < 1024:
print(f'[Vary] Image is resized because it is too small.')
shape_ceil = 1024
elif shape_ceil > 2048:
print(f'[Vary] Image is resized because it is too big.')
shape_ceil = 2048
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
if 'upscale' in goals:
H, W, C = uov_input_image.shape
progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...')
uov_input_image = perform_upscale(uov_input_image)
print(f'Image upscaled.')
if '1.5x' in uov_method:
f = 1.5
elif '2x' in uov_method:
f = 2.0
else:
f = 1.0
shape_ceil = get_shape_ceil(H * f, W * f)
if shape_ceil < 1024:
print(f'[Upscale] Image is resized because it is too small.')
uov_input_image = set_image_shape_ceil(uov_input_image, 1024)
shape_ceil = 1024
else:
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f)
image_is_super_large = shape_ceil > 2800
if 'fast' in uov_method:
direct_return = True
elif image_is_super_large:
print('Image is too large. Directly returned the SR image. '
'Usually directly return SR image at 4K resolution '
'yields better results than SDXL diffusion.')
direct_return = True
else:
direct_return = False
if direct_return:
d = [('Upscale (Fast)', 'upscale_fast', '2x')]
uov_input_image_path = log(uov_input_image, d, output_format=output_format)
yield_result(async_task, uov_input_image_path, do_not_show_finished_images=True)
return
tiled = True
denoising_strength = 0.382
if overwrite_upscale_strength > 0:
denoising_strength = overwrite_upscale_strength
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
initial_latent = core.encode_vae(
vae=candidate_vae,
pixels=initial_pixels, tiled=True)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
if 'inpaint' in goals:
if len(outpaint_selections) > 0:
H, W, C = inpaint_image.shape
if 'top' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
constant_values=255)
if 'bottom' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
constant_values=255)
H, W, C = inpaint_image.shape
if 'left' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(W * 0.3), 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(W * 0.3), 0]], mode='constant',
constant_values=255)
if 'right' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(W * 0.3)], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(W * 0.3)]], mode='constant',
constant_values=255)
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
inpaint_strength = 1.0
inpaint_respective_field = 1.0
denoising_strength = inpaint_strength
inpaint_worker.current_task = inpaint_worker.InpaintWorker(
image=inpaint_image,
mask=inpaint_mask,
use_fill=denoising_strength > 0.99,
k=inpaint_respective_field
)
if debugging_inpaint_preprocessor:
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(),
do_not_show_finished_images=True)
return
progressbar(async_task, 13, 'VAE Inpaint encoding ...')
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
latent_inpaint, latent_mask = core.encode_vae_inpaint(
mask=inpaint_pixel_mask,
vae=candidate_vae,
pixels=inpaint_pixel_image)
latent_swap = None
if candidate_vae_swap is not None:
progressbar(async_task, 13, 'VAE SD15 encoding ...')
latent_swap = core.encode_vae(
vae=candidate_vae_swap,
pixels=inpaint_pixel_fill)['samples']
progressbar(async_task, 13, 'VAE encoding ...')
latent_fill = core.encode_vae(
vae=candidate_vae,
pixels=inpaint_pixel_fill)['samples']
inpaint_worker.current_task.load_latent(
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)
if inpaint_parameterized:
pipeline.final_unet = inpaint_worker.current_task.patch(
inpaint_head_model_path=inpaint_head_model_path,
inpaint_latent=latent_inpaint,
inpaint_latent_mask=latent_mask,
model=pipeline.final_unet
)
if not inpaint_disable_initial_latent:
initial_latent = {'samples': latent_fill}
B, C, H, W = latent_fill.shape
height, width = H * 8, W * 8
final_height, final_width = inpaint_worker.current_task.image.shape[:2]
print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.')
if 'cn' in goals:
for task in cn_tasks[flags.cn_canny]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not skipping_cn_preprocessor:
cn_img = preprocessors.canny_pyramid(cn_img, canny_low_threshold, canny_high_threshold)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_cpds]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not skipping_cn_preprocessor:
cn_img = preprocessors.cpds(cn_img)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_ip]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_ip_face]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
if not skipping_cn_preprocessor:
cn_img = extras.face_crop.crop_image(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face]
if len(all_ip_tasks) > 0:
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks)
if freeu_enabled:
print(f'FreeU is enabled!')
pipeline.final_unet = core.apply_freeu(
pipeline.final_unet,
freeu_b1,
freeu_b2,
freeu_s1,
freeu_s2
)
all_steps = steps * image_number
print(f'[Parameters] Denoising Strength = {denoising_strength}')
if isinstance(initial_latent, dict) and 'samples' in initial_latent:
log_shape = initial_latent['samples'].shape
else:
log_shape = f'Image Space {(height, width)}'
print(f'[Parameters] Initial Latent shape: {log_shape}')
preparation_time = time.perf_counter() - execution_start_time
print(f'Preparation time: {preparation_time:.2f} seconds')
final_sampler_name = sampler_name
final_scheduler_name = scheduler_name
if scheduler_name == 'lcm':
final_scheduler_name = 'sgm_uniform'
if pipeline.final_unet is not None:
pipeline.final_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_unet,
sampling='lcm',
zsnr=False)[0]
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_refiner_unet,
sampling='lcm',
zsnr=False)[0]
print('Using lcm scheduler.')
async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)])
def callback(step, x0, x, total_steps, y):
done_steps = current_task_id * steps + step
async_task.yields.append(['preview', (
int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
f'Step {step}/{total_steps} in the {current_task_id + 1}{ordinal_suffix(current_task_id + 1)} Sampling', y)])
for current_task_id, task in enumerate(tasks):
execution_start_time = time.perf_counter()
try:
if async_task.last_stop is not False:
ldm_patched.modules.model_management.interrupt_current_processing()
positive_cond, negative_cond = task['c'], task['uc']
if 'cn' in goals:
for cn_flag, cn_path in [
(flags.cn_canny, controlnet_canny_path),
(flags.cn_cpds, controlnet_cpds_path)
]:
for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]:
positive_cond, negative_cond = core.apply_controlnet(
positive_cond, negative_cond,
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)
imgs = pipeline.process_diffusion(
positive_cond=positive_cond,
negative_cond=negative_cond,
steps=steps,
switch=switch,
width=width,
height=height,
image_seed=task['task_seed'],
callback=callback,
sampler_name=final_sampler_name,
scheduler_name=final_scheduler_name,
latent=initial_latent,
denoise=denoising_strength,
tiled=tiled,
cfg_scale=cfg_scale,
refiner_swap_method=refiner_swap_method,
disable_preview=disable_preview
)
del task['c'], task['uc'], positive_cond, negative_cond # Save memory
if inpaint_worker.current_task is not None:
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
img_paths = []
for x in imgs:
d = [('Prompt', 'prompt', task['log_positive_prompt']),
('Negative Prompt', 'negative_prompt', task['log_negative_prompt']),
('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']),
('Styles', 'styles', str(raw_style_selections)),
('Performance', 'performance', performance_selection.value)]
if performance_selection.steps() != steps:
d.append(('Steps', 'steps', steps))
d += [('Resolution', 'resolution', str((width, height))),
('Guidance Scale', 'guidance_scale', guidance_scale),
('Sharpness', 'sharpness', sharpness),
('ADM Guidance', 'adm_guidance', str((
modules.patch.patch_settings[pid].positive_adm_scale,
modules.patch.patch_settings[pid].negative_adm_scale,
modules.patch.patch_settings[pid].adm_scaler_end))),
('Base Model', 'base_model', base_model_name),
('Refiner Model', 'refiner_model', refiner_model_name),
('Refiner Switch', 'refiner_switch', refiner_switch)]
if refiner_model_name != 'None':
if overwrite_switch > 0:
d.append(('Overwrite Switch', 'overwrite_switch', overwrite_switch))
if refiner_swap_method != flags.refiner_swap_method:
d.append(('Refiner Swap Method', 'refiner_swap_method', refiner_swap_method))
if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr:
d.append(('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))
d.append(('Sampler', 'sampler', sampler_name))
d.append(('Scheduler', 'scheduler', scheduler_name))
d.append(('Seed', 'seed', str(task['task_seed'])))
if freeu_enabled:
d.append(('FreeU', 'freeu', str((freeu_b1, freeu_b2, freeu_s1, freeu_s2))))
for li, (n, w) in enumerate(loras):
if n != 'None':
d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}'))
metadata_parser = None
if save_metadata_to_images:
metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme)
metadata_parser.set_data(task['log_positive_prompt'], task['positive'],
task['log_negative_prompt'], task['negative'],
steps, base_model_name, refiner_model_name, loras)
d.append(('Metadata Scheme', 'metadata_scheme', metadata_scheme.value if save_metadata_to_images else save_metadata_to_images))
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
img_paths.append(log(x, d, metadata_parser, output_format))
yield_result(async_task, img_paths, do_not_show_finished_images=len(tasks) == 1 or disable_intermediate_results)
except ldm_patched.modules.model_management.InterruptProcessingException as e:
if async_task.last_stop == 'skip':
print('User skipped')
async_task.last_stop = False
continue
else:
print('User stopped')
break
execution_time = time.perf_counter() - execution_start_time
print(f'Generating and saving time: {execution_time:.2f} seconds')
async_task.processing = False
return
while True:
time.sleep(0.01)
if len(async_tasks) > 0:
task = async_tasks.pop(0)
generate_image_grid = task.args.pop(0)
try:
handler(task)
if generate_image_grid:
build_image_wall(task)
task.yields.append(['finish', task.results])
pipeline.prepare_text_encoder(async_call=True)
except:
traceback.print_exc()
task.yields.append(['finish', task.results])
finally:
if pid in modules.patch.patch_settings:
del modules.patch.patch_settings[pid]
pass
threading.Thread(target=worker, daemon=True).start()