import threading buffer = [] outputs = [] def worker(): global buffer, outputs import time import shared import random import modules.default_pipeline as pipeline import modules.path import modules.patch from modules.sdxl_styles import apply_style_negative, apply_style_positive, aspect_ratios from modules.private_logger import log try: async_gradio_app = shared.gradio_root flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' if async_gradio_app.share: flag += f''' or {async_gradio_app.share_url}''' print(flag) except Exception as e: print(e) def handler(task): prompt, negative_prompt, style_selction, performance_selction, \ aspect_ratios_selction, image_number, image_seed, sharpness, raw_mode, \ base_model_name, refiner_model_name, \ l1, w1, l2, w2, l3, w3, l4, w4, l5, w5 = task loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)] modules.patch.sharpness = sharpness outputs.append(['preview', (1, 'Initializing ...', None)]) seed = image_seed max_seed = int(1024 * 1024 * 1024) if not isinstance(seed, int): seed = random.randint(1, max_seed) if seed < 0: seed = - seed seed = seed % max_seed outputs.append(['preview', (3, 'Load models ...', None)]) pipeline.refresh_base_model(base_model_name) pipeline.refresh_refiner_model(refiner_model_name) pipeline.refresh_loras(loras) tasks = [] if raw_mode: outputs.append(['preview', (5, 'Encoding negative text ...', None)]) n_txt = apply_style_negative(style_selction, negative_prompt) n_cond = pipeline.process_prompt(n_txt) outputs.append(['preview', (9, 'Encoding positive text ...', None)]) p_txt = apply_style_positive(style_selction, prompt) p_cond = pipeline.process_prompt(p_txt) for i in range(image_number): tasks.append(dict( prompt=prompt, negative_prompt=negative_prompt, seed=seed + i, n_cond=n_cond, p_cond=p_cond, real_positive_prompt=p_txt, real_negative_prompt=n_txt )) else: for i in range(image_number): outputs.append(['preview', (5, f'Preparing positive text #{i + 1} ...', None)]) current_seed = seed + i p_txt = pipeline.expand_txt(prompt, current_seed) print(f'Expanded positive prompt: \n\n{p_txt}\n\n') p_txt = apply_style_positive(style_selction, p_txt) tasks.append(dict( prompt=prompt, negative_prompt=negative_prompt, seed=current_seed, real_positive_prompt=p_txt, )) outputs.append(['preview', (9, 'Encoding negative text ...', None)]) n_txt = apply_style_negative(style_selction, negative_prompt) n_cond = pipeline.process_prompt(n_txt) for i, t in enumerate(tasks): outputs.append(['preview', (12, f'Encoding positive text #{i + 1} ...', None)]) t['p_cond'] = pipeline.process_prompt(t['real_positive_prompt']) t['real_negative_prompt'] = n_txt t['n_cond'] = n_cond if performance_selction == 'Speed': steps = 30 switch = 20 else: steps = 60 switch = 40 width, height = aspect_ratios[aspect_ratios_selction] results = [] all_steps = steps * image_number def callback(step, x0, x, total_steps, y): done_steps = current_task_id * steps + step outputs.append(['preview', ( int(15.0 + 85.0 * float(done_steps) / float(all_steps)), f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling', y)]) outputs.append(['preview', (13, 'Starting tasks ...', None)]) for current_task_id, task in enumerate(tasks): imgs = pipeline.process_diffusion( positive_cond=task['p_cond'], negative_cond=task['n_cond'], steps=steps, switch=switch, width=width, height=height, image_seed=task['seed'], callback=callback) for x in imgs: d = [ ('Prompt', task['prompt']), ('Negative Prompt', task['negative_prompt']), ('Real Positive Prompt', task['real_positive_prompt']), ('Real Negative Prompt', task['real_negative_prompt']), ('Raw Mode', str(raw_mode)), ('Style', style_selction), ('Performance', performance_selction), ('Resolution', str((width, height))), ('Sharpness', sharpness), ('Base Model', base_model_name), ('Refiner Model', refiner_model_name), ('Seed', task['seed']) ] for n, w in loras: if n != 'None': d.append((f'LoRA [{n}] weight', w)) log(x, d) results += imgs outputs.append(['results', results]) return while True: time.sleep(0.01) if len(buffer) > 0: task = buffer.pop(0) handler(task) pass threading.Thread(target=worker, daemon=True).start()