import gradio as gr import random import time import shared import argparse import modules.path import fooocus_version import modules.html import modules.async_worker as worker import modules.flags as flags import modules.gradio_hijack as grh import comfy.model_management as model_management from modules.sdxl_styles import style_keys, aspect_ratios, fooocus_expansion, default_styles def generate_clicked(*args): execution_start_time = time.perf_counter() yield gr.update(visible=True, value=modules.html.make_progress_html(1, 'Initializing ...')), \ gr.update(visible=True, value=None), \ gr.update(visible=False) worker.buffer.append(list(args)) finished = False while not finished: time.sleep(0.01) if len(worker.outputs) > 0: flag, product = worker.outputs.pop(0) if flag == 'preview': percentage, title, image = product yield gr.update(visible=True, value=modules.html.make_progress_html(percentage, title)), \ gr.update(visible=True, value=image) if image is not None else gr.update(), \ gr.update(visible=False) if flag == 'results': yield gr.update(visible=False), \ gr.update(visible=False), \ gr.update(visible=True, value=product) finished = True execution_time = time.perf_counter() - execution_start_time print(f'Total time: {execution_time:.2f} seconds') return shared.gradio_root = gr.Blocks(title='Fooocus ' + fooocus_version.version, css=modules.html.css).queue() with shared.gradio_root: with gr.Row(): with gr.Column(): progress_window = grh.Image(label='Preview', show_label=True, height=640, visible=False) progress_html = gr.HTML(value=modules.html.make_progress_html(32, 'Progress 32%'), visible=False, elem_id='progress-bar', elem_classes='progress-bar') gallery = gr.Gallery(label='Gallery', show_label=False, object_fit='contain', height=720, visible=True) with gr.Row(elem_classes='type_row'): with gr.Column(scale=0.85): prompt = gr.Textbox(show_label=False, placeholder="Type prompt here.", container=False, autofocus=True, elem_classes='type_row', lines=1024) with gr.Column(scale=0.15, min_width=0): run_button = gr.Button(label="Generate", value="Generate", elem_classes='type_row', visible=True) stop_button = gr.Button(label="Stop", value="Stop", elem_classes='type_row', visible=False) def stop_clicked(): model_management.interrupt_current_processing() return gr.update(interactive=False) stop_button.click(stop_clicked, outputs=stop_button, queue=False) with gr.Row(elem_classes='advanced_check_row'): input_image_checkbox = gr.Checkbox(label='Input Image', value=False, container=False, elem_classes='min_check') advanced_checkbox = gr.Checkbox(label='Advanced', value=False, container=False, elem_classes='min_check') with gr.Row(visible=False) as image_input_panel: with gr.Tabs(): with gr.TabItem(label='Upscale or Variation') as uov_tab: with gr.Row(): with gr.Column(): uov_input_image = grh.Image(label='Drag above image to here', source='upload', type='numpy') with gr.Column(): uov_method = gr.Radio(label='Upscale or Variation:', choices=flags.uov_list, value=flags.disabled) gr.HTML('\U0001F4D4 Document') with gr.TabItem(label='Inpaint or Outpaint (beta)') as inpaint_tab: inpaint_input_image = grh.Image(label='Drag above image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF") gr.HTML('Outpaint Expansion (\U0001F4D4 Document):') outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint', show_label=False, container=False) gr.HTML('* \"Inpaint or Outpaint\" is powered by the sampler \"DPMPP Fooocus Seamless 2M SDE Karras Inpaint Sampler\" (beta)') input_image_checkbox.change(lambda x: gr.update(visible=x), inputs=input_image_checkbox, outputs=image_input_panel, queue=False, _js="(x) => {if(x){setTimeout(() => window.scrollTo({ top: window.scrollY + 500, behavior: 'smooth' }), 50);}else{setTimeout(() => window.scrollTo({ top: 0, behavior: 'smooth' }), 50);} return x}") current_tab = gr.Textbox(value='uov', visible=False) default_image = None def update_default_image(x): global default_image if isinstance(x, dict): default_image = x['image'] else: default_image = x return def clear_default_image(): global default_image default_image = None return uov_input_image.upload(update_default_image, inputs=uov_input_image, queue=False) inpaint_input_image.upload(update_default_image, inputs=inpaint_input_image, queue=False) uov_input_image.clear(clear_default_image, queue=False) inpaint_input_image.clear(clear_default_image, queue=False) uov_tab.select(lambda: ['uov', default_image], outputs=[current_tab, uov_input_image], queue=False) inpaint_tab.select(lambda: ['inpaint', default_image], outputs=[current_tab, inpaint_input_image], queue=False) with gr.Column(scale=0.5, visible=False) as right_col: with gr.Tab(label='Setting'): performance_selection = gr.Radio(label='Performance', choices=['Speed', 'Quality'], value='Speed') aspect_ratios_selection = gr.Radio(label='Aspect Ratios', choices=list(aspect_ratios.keys()), value='1152×896', info='width × height') image_number = gr.Slider(label='Image Number', minimum=1, maximum=32, step=1, value=2) negative_prompt = gr.Textbox(label='Negative Prompt', show_label=True, placeholder="Type prompt here.", info='Describing objects that you do not want to see.') seed_random = gr.Checkbox(label='Random', value=True) image_seed = gr.Number(label='Seed', value=0, precision=0, visible=False) def random_checked(r): return gr.update(visible=not r) def refresh_seed(r, s): if r: return random.randint(1, 1024*1024*1024) else: return s seed_random.change(random_checked, inputs=[seed_random], outputs=[image_seed], queue=False) with gr.Tab(label='Style'): style_selections = gr.CheckboxGroup(show_label=False, container=False, choices=[fooocus_expansion] + style_keys, value=[fooocus_expansion] + default_styles, label='Image Style') with gr.Tab(label='Model'): with gr.Row(): base_model = gr.Dropdown(label='SDXL Base Model', choices=modules.path.model_filenames, value=modules.path.default_base_model_name, show_label=True) refiner_model = gr.Dropdown(label='SDXL Refiner', choices=['None'] + modules.path.model_filenames, value=modules.path.default_refiner_model_name, show_label=True) with gr.Accordion(label='LoRAs', open=True): lora_ctrls = [] for i in range(5): with gr.Row(): lora_model = gr.Dropdown(label=f'SDXL LoRA {i+1}', choices=['None'] + modules.path.lora_filenames, value=modules.path.default_lora_name if i == 0 else 'None') lora_weight = gr.Slider(label='Weight', minimum=-2, maximum=2, step=0.01, value=modules.path.default_lora_weight) lora_ctrls += [lora_model, lora_weight] with gr.Row(): model_refresh = gr.Button(label='Refresh', value='\U0001f504 Refresh All Files', variant='secondary', elem_classes='refresh_button') with gr.Tab(label='Advanced'): sharpness = gr.Slider(label='Sampling Sharpness', minimum=0.0, maximum=30.0, step=0.001, value=2.0, info='Higher value means image and texture are sharper.') guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=30.0, step=0.01, value=7.0, info='Higher value means style is cleaner, vivider, and more artistic.') gr.HTML('\U0001F4D4 Document') dev_mode = gr.Checkbox(label='Developer Debug Mode', value=False, container=False) with gr.Column(visible=False) as dev_tools: with gr.Tab(label='Developer Control and Debug Tools'): adm_scaler_positive = gr.Slider(label='Positive ADM Guidance Scaler', minimum=0.1, maximum=3.0, step=0.001, value=1.5, info='The scaler multiplied to positive ADM (use 1.0 to disable). ') adm_scaler_negative = gr.Slider(label='Negative ADM Guidance Scaler', minimum=0.1, maximum=3.0, step=0.001, value=0.8, info='The scaler multiplied to negative ADM (use 1.0 to disable). ') adm_scaler_end = gr.Slider(label='ADM Guidance End At Step', minimum=0.0, maximum=1.0, step=0.001, value=0.3, info='When to end the guidance from positive/negative ADM. ') adaptive_cfg = gr.Slider(label='CFG Mimicking from TSNR', minimum=1.0, maximum=30.0, step=0.01, value=7.0, info='Enabling Fooocus\'s implementation of CFG mimicking for TSNR ' '(effective when real CFG > mimicked CFG).') sampler_name = gr.Dropdown(label='Sampler', choices=flags.sampler_list, value=flags.default_sampler, info='Only effective in non-inpaint mode.') scheduler_name = gr.Dropdown(label='Scheduler', choices=flags.scheduler_list, value=flags.default_scheduler, info='Scheduler of Sampler.') overwrite_step = gr.Slider(label='Forced Overwrite of Sampling Step', minimum=-1, maximum=200, step=1, value=-1, info='Set as -1 to disable. For developer debugging.') overwrite_switch = gr.Slider(label='Forced Overwrite of Refiner Switch Step', minimum=-1, maximum=200, step=1, value=-1, info='Set as -1 to disable. For developer debugging.') overwrite_width = gr.Slider(label='Forced Overwrite of Generating Width', minimum=-1, maximum=2048, step=1, value=-1, info='Set as -1 to disable. For developer debugging.') overwrite_height = gr.Slider(label='Forced Overwrite of Generating Height', minimum=-1, maximum=2048, step=1, value=-1, info='Set as -1 to disable. For developer debugging.') overwrite_vary_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Vary"', minimum=-1, maximum=1.0, step=0.001, value=-1, info='Set as negative number to disable. For developer debugging.') overwrite_upscale_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Upscale"', minimum=-1, maximum=1.0, step=0.001, value=-1, info='Set as negative number to disable. For developer debugging.') overwrite_ctrls = [overwrite_step, overwrite_switch, overwrite_width, overwrite_height, overwrite_vary_strength, overwrite_upscale_strength] def dev_mode_checked(r): return gr.update(visible=r) dev_mode.change(dev_mode_checked, inputs=[dev_mode], outputs=[dev_tools], queue=False) def model_refresh_clicked(): modules.path.update_all_model_names() results = [] results += [gr.update(choices=modules.path.model_filenames), gr.update(choices=['None'] + modules.path.model_filenames)] for i in range(5): results += [gr.update(choices=['None'] + modules.path.lora_filenames), gr.update()] return results model_refresh.click(model_refresh_clicked, [], [base_model, refiner_model] + lora_ctrls, queue=False) advanced_checkbox.change(lambda x: gr.update(visible=x), advanced_checkbox, right_col, queue=False) ctrls = [ prompt, negative_prompt, style_selections, performance_selection, aspect_ratios_selection, image_number, image_seed, sharpness, adm_scaler_positive, adm_scaler_negative, adm_scaler_end, guidance_scale, adaptive_cfg, sampler_name, scheduler_name ] ctrls += overwrite_ctrls ctrls += [base_model, refiner_model] + lora_ctrls ctrls += [input_image_checkbox, current_tab] ctrls += [uov_method, uov_input_image] ctrls += [outpaint_selections, inpaint_input_image] run_button.click(lambda: (gr.update(visible=True, interactive=True), gr.update(visible=False), []), outputs=[stop_button, run_button, gallery])\ .then(fn=refresh_seed, inputs=[seed_random, image_seed], outputs=image_seed)\ .then(fn=generate_clicked, inputs=ctrls, outputs=[progress_html, progress_window, gallery])\ .then(lambda: (gr.update(visible=True), gr.update(visible=False)), outputs=[run_button, stop_button]) parser = argparse.ArgumentParser() parser.add_argument("--port", type=int, default=None, help="Set the listen port.") parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.") parser.add_argument("--listen", type=str, default=None, metavar="IP", nargs="?", const="0.0.0.0", help="Set the listen interface.") args = parser.parse_args() shared.gradio_root.launch(inbrowser=True, server_name=args.listen, server_port=args.port, share=args.share)