import os import torch import safetensors.torch from omegaconf import OmegaConf from sgm.util import instantiate_from_config from sgm.modules.diffusionmodules.sampling import EulerAncestralSampler sampler = EulerAncestralSampler( num_steps=40, discretization_config={ "target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization", }, guider_config={ "target": "sgm.modules.diffusionmodules.guiders.VanillaCFG", "params": {"scale": 9.0, "dyn_thresh_config": { "target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding" }}, }, eta=1.0, s_noise=1.0, verbose=True, ) config_path = './sd_xl_base.yaml' config = OmegaConf.load(config_path) model = instantiate_from_config(config.model).cpu() model.eval() sd = safetensors.torch.load_file('./sd_xl_base_1.0.safetensors') model.load_state_dict(sd, strict=False) a = 0