import torch import math import fcbh.model_management as model_management from transformers.generation.logits_process import LogitsProcessorList from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed from modules.path import fooocus_expansion_path from fcbh.model_patcher import ModelPatcher # limitation of np.random.seed(), called from transformers.set_seed() SEED_LIMIT_NUMPY = 2**32 fooocus_magic_split = [ ', extremely', ', intricate,', ] dangrous_patterns = '[]【】()()|::' black_list = ['art', 'digital', 'Ġpaint', 'painting', 'drawing', 'draw', 'drawn', 'concept', 'illustration', 'illustrated', 'illustrate', 'face', 'eye', 'eyes', 'hand', 'hands', 'monster', 'artistic', 'oil', 'brush', 'artwork', 'artworks', 'skeletal', 'by', 'By', 'skeleton'] black_list += ['Ġ' + k for k in black_list] def safe_str(x): x = str(x) for _ in range(16): x = x.replace(' ', ' ') return x.strip(",. \r\n") def remove_pattern(x, pattern): for p in pattern: x = x.replace(p, '') return x class FooocusExpansion: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path) self.vocab = self.tokenizer.vocab self.logits_bias = torch.zeros((1, len(self.vocab)), dtype=torch.float32) self.logits_bias[0, self.tokenizer.eos_token_id] = - 16.0 # test_198 = self.tokenizer('\n', return_tensors="pt") self.logits_bias[0, 198] = - 1024.0 for k, v in self.vocab.items(): if k in black_list: self.logits_bias[0, v] = - 1024.0 self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path) self.model.eval() load_device = model_management.text_encoder_device() offload_device = model_management.text_encoder_offload_device() # MPS hack if model_management.is_device_mps(load_device): load_device = torch.device('cpu') offload_device = torch.device('cpu') use_fp16 = model_management.should_use_fp16(device=load_device) if use_fp16: self.model.half() self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device) print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.') def logits_processor(self, input_ids, scores): self.logits_bias = self.logits_bias.to(scores) return scores + self.logits_bias def __call__(self, prompt, seed): if prompt == '': return '' if self.patcher.current_device != self.patcher.load_device: print('Fooocus Expansion loaded by itself.') model_management.load_model_gpu(self.patcher) seed = int(seed) % SEED_LIMIT_NUMPY set_seed(seed) origin = safe_str(prompt) prompt = origin + fooocus_magic_split[seed % len(fooocus_magic_split)] tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt") tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device) tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device) current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1]) max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0)) max_new_tokens = max_token_length - current_token_length logits_processor = LogitsProcessorList([self.logits_processor]) # https://huggingface.co/blog/introducing-csearch # https://huggingface.co/docs/transformers/generation_strategies features = self.model.generate(**tokenized_kwargs, num_beams=1, max_new_tokens=max_new_tokens, do_sample=True, logits_processor=logits_processor) response = self.tokenizer.batch_decode(features, skip_special_tokens=True) result = response[0][len(origin):] result = safe_str(result) result = remove_pattern(result, dangrous_patterns) return result