use SOTA sampling for GPT2
This commit is contained in:
parent
0f09b61ce5
commit
f7f548ff35
@ -1 +1 @@
|
||||
version = '2.0.8'
|
||||
version = '2.0.9'
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
import torch
|
||||
import comfy.model_management as model_management
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, set_seed
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
||||
from modules.path import fooocus_expansion_path
|
||||
from comfy.sd import ModelPatcher
|
||||
|
||||
@ -28,35 +27,35 @@ def remove_pattern(x, pattern):
|
||||
|
||||
class FooocusExpansion:
|
||||
def __init__(self):
|
||||
use_fp16 = model_management.should_use_fp16()
|
||||
self.use_fp16 = model_management.should_use_fp16()
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
|
||||
|
||||
if use_fp16:
|
||||
if self.use_fp16:
|
||||
self.model.half()
|
||||
|
||||
load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
|
||||
|
||||
self.pipe = pipeline('text-generation',
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
device='cpu',
|
||||
torch_dtype=torch.float16 if use_fp16 else torch.float32)
|
||||
|
||||
print(f'Fooocus Expansion engine loaded.')
|
||||
|
||||
def __call__(self, prompt, seed):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
self.pipe.device = self.patcher.load_device
|
||||
seed = int(seed)
|
||||
set_seed(seed)
|
||||
origin = safe_str(prompt)
|
||||
prompt = origin + fooocus_magic_split[seed % len(fooocus_magic_split)]
|
||||
response = self.pipe(prompt, max_length=len(prompt) + 256)
|
||||
result = response[0]['generated_text'][len(origin):]
|
||||
|
||||
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
|
||||
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
|
||||
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
|
||||
|
||||
features = self.model.generate(**tokenized_kwargs, num_beams=5, do_sample=True, max_new_tokens=256)
|
||||
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
|
||||
|
||||
result = response[0][len(origin):]
|
||||
result = safe_str(result)
|
||||
result = remove_pattern(result, dangrous_patterns)
|
||||
return result
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user