This commit is contained in:
Manuel Schmid 2024-03-17 13:31:39 -06:00 committed by GitHub
commit e0543b3c38
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 293 additions and 19 deletions

View File

@ -0,0 +1,43 @@
batch_size = 1
modelname = "groundingdino"
backbone = "swin_T_224_1k"
position_embedding = "sine"
pe_temperatureH = 20
pe_temperatureW = 20
return_interm_indices = [1, 2, 3]
backbone_freeze_keywords = None
enc_layers = 6
dec_layers = 6
pre_norm = False
dim_feedforward = 2048
hidden_dim = 256
dropout = 0.0
nheads = 8
num_queries = 900
query_dim = 4
num_patterns = 0
num_feature_levels = 4
enc_n_points = 4
dec_n_points = 4
two_stage_type = "standard"
two_stage_bbox_embed_share = False
two_stage_class_embed_share = False
transformer_activation = "relu"
dec_pred_bbox_embed_share = True
dn_box_noise_scale = 1.0
dn_label_noise_ratio = 0.5
dn_label_coef = 1.0
dn_bbox_coef = 1.0
embed_init_tgt = True
dn_labelbook_size = 2000
max_text_len = 256
text_encoder_type = "bert-base-uncased"
use_text_enhancer = True
use_fusion_layer = True
use_checkpoint = True
use_transformer_ckpt = True
use_text_cross_attention = True
text_dropout = 0.0
fusion_dropout = 0.0
fusion_droppath = 0.1
sub_sentence_present = True

View File

@ -0,0 +1,98 @@
from typing import Tuple, List
import ldm_patched.modules.model_management as model_management
from ldm_patched.modules.model_patcher import ModelPatcher
from modules.config import path_inpaint
from modules.model_loader import load_file_from_url
import numpy as np
import supervision as sv
import torch
from groundingdino.util.inference import Model
from groundingdino.util.inference import load_model, preprocess_caption, get_phrases_from_posmap
class GroundingDinoModel(Model):
def __init__(self):
self.config_file = 'extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py'
self.model = None
self.load_device = torch.device('cpu')
self.offload_device = torch.device('cpu')
def predict_with_caption(
self,
image: np.ndarray,
caption: str,
box_threshold: float = 0.35,
text_threshold: float = 0.25
) -> Tuple[sv.Detections, List[str]]:
if self.model is None:
filename = load_file_from_url(
url="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth",
file_name='groundingdino_swint_ogc.pth',
model_dir=path_inpaint)
model = load_model(model_config_path=self.config_file, model_checkpoint_path=filename)
self.load_device = model_management.text_encoder_device()
self.offload_device = model_management.text_encoder_offload_device()
model.to(self.offload_device)
self.model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device)
model_management.load_model_gpu(self.model)
processed_image = GroundingDinoModel.preprocess_image(image_bgr=image).to(self.load_device)
boxes, logits, phrases = predict(
model=self.model,
image=processed_image,
caption=caption,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=self.load_device)
source_h, source_w, _ = image.shape
detections = GroundingDinoModel.post_process_result(
source_h=source_h,
source_w=source_w,
boxes=boxes,
logits=logits)
return detections, phrases
def predict(
model,
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float,
device: str = "cuda"
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
caption = preprocess_caption(caption=caption)
# override to use model wrapped by patcher
model = model.model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
mask = prediction_logits.max(dim=1)[0] > box_threshold
logits = prediction_logits[mask] # logits.shape = (n, 256)
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
phrases = [
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
for logit
in logits
]
return boxes, logits.max(dim=1)[0], phrases
default_groundingdino = GroundingDinoModel().predict_with_caption

42
extras/inpaint_mask.py Normal file
View File

@ -0,0 +1,42 @@
from PIL import Image
import numpy as np
import torch
from rembg import remove, new_session
from extras.GroundingDINO.util.inference import default_groundingdino
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def run_grounded_sam(input_image, text_prompt, box_threshold, text_threshold):
# run grounding dino model
boxes, _ = default_groundingdino(
image=np.array(input_image),
caption=text_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold
)
return boxes.xyxy
def generate_mask_from_image(image, mask_model, extras):
if image is None:
return
if 'image' in image:
image = image['image']
if mask_model == 'sam':
boxes = run_grounded_sam(Image.fromarray(image), extras['sam_prompt_text'], box_threshold=extras['box_threshold'], text_threshold=extras['text_threshold'])
boxes = np.array([[0, 0, image.shape[1], image.shape[0]]]) if len(boxes) == 0 else boxes
extras['sam_prompt'] = []
for idx, box in enumerate(boxes):
extras['sam_prompt'] += [{"type": "rectangle", "data": box.tolist()}]
return remove(
image,
session=new_session(mask_model, **extras),
only_mask=True,
**extras
)

View File

@ -36,6 +36,15 @@
"Top": "Top",
"Bottom": "Bottom",
"* \"Inpaint or Outpaint\" is powered by the sampler \"DPMPP Fooocus Seamless 2M SDE Karras Inpaint Sampler\" (beta)": "* \"Inpaint or Outpaint\" is powered by the sampler \"DPMPP Fooocus Seamless 2M SDE Karras Inpaint Sampler\" (beta)",
"Mask generation model": "Mask generation model",
"Cloth category": "Cloth category",
"Segmentation prompt": "Segmentation prompt",
"Advanced options": "Advanced options",
"SAM model": "SAM model",
"Quantization": "Quantization",
"Box Threshold": "Box Threshold",
"Text Threshold": "Text Threshold",
"Generate mask from image": "Generate mask from image",
"Setting": "Setting",
"Style": "Style",
"Performance": "Performance",

View File

@ -22,7 +22,9 @@ import fooocus_version
from build_launcher import build_launcher
from modules.launch_util import is_installed, run, python, run_pip, requirements_met
from modules.model_loader import load_file_from_url
from modules import config
os.environ["U2NET_HOME"] = config.path_inpaint
REINSTALL_ALL = False
TRY_INSTALL_XFORMERS = False

View File

@ -320,13 +320,17 @@ def worker():
inpaint_mask = inpaint_input_image['mask'][:, :, 0]
if inpaint_mask_upload_checkbox:
if isinstance(inpaint_mask_image_upload, np.ndarray):
if inpaint_mask_image_upload.ndim == 3:
H, W, C = inpaint_image.shape
inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H)
inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2)
inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255
inpaint_mask = np.maximum(inpaint_mask, inpaint_mask_image_upload)
if isinstance(inpaint_mask_image_upload, dict):
if (isinstance(inpaint_mask_image_upload['image'], np.ndarray)
and isinstance(inpaint_mask_image_upload['mask'], np.ndarray)
and inpaint_mask_image_upload['image'].ndim == 3):
inpaint_mask_image_upload = np.maximum(inpaint_mask_image_upload['image'], inpaint_mask_image_upload['mask'])
if isinstance(inpaint_mask_image_upload, np.ndarray) and inpaint_mask_image_upload.ndim == 3:
H, W, C = inpaint_image.shape
inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H)
inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2)
inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255
inpaint_mask = np.maximum(inpaint_mask, inpaint_mask_image_upload)
if int(inpaint_erode_or_dilate) != 0:
inpaint_mask = erode_or_dilate(inpaint_mask, inpaint_erode_or_dilate)

View File

@ -409,6 +409,24 @@ metadata_created_by = get_config_item_or_set_default(
example_inpaint_prompts = [[x] for x in example_inpaint_prompts]
default_inpaint_mask_model = get_config_item_or_set_default(
key='default_inpaint_mask_model',
default_value='isnet-general-use',
validator=lambda x: x in modules.flags.inpaint_mask_models
)
default_inpaint_mask_cloth_category = get_config_item_or_set_default(
key='default_inpaint_mask_cloth_category',
default_value='full',
validator=lambda x: x in modules.flags.inpaint_mask_cloth_category
)
default_inpaint_mask_sam_model = get_config_item_or_set_default(
key='default_inpaint_mask_sam_model',
default_value='sam_vit_b_01ec64',
validator=lambda x: x in modules.flags.inpaint_mask_sam_model
)
config_dict["default_loras"] = default_loras = default_loras[:default_max_lora_number] + [['None', 1.0] for _ in range(default_max_lora_number - len(default_loras))]
possible_preset_keys = [

View File

@ -69,6 +69,10 @@ default_parameters = {
output_formats = ['png', 'jpg', 'webp']
inpaint_mask_models = ['u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg', 'silueta', 'isnet-general-use', 'isnet-anime', 'sam']
inpaint_mask_cloth_category = ['full', 'upper', 'lower']
inpaint_mask_sam_model = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195']
inpaint_engine_versions = ['None', 'v1', 'v2.5', 'v2.6']
inpaint_option_default = 'Inpaint or Outpaint (default)'
inpaint_option_detail = 'Improve Detail (face, hand, eyes, etc.)'

View File

@ -16,3 +16,5 @@ opencv-contrib-python==4.8.0.74
httpx==0.24.1
onnxruntime==1.16.3
timm==0.9.2
rembg==2.0.53
groundingdino-py==0.4.0

View File

@ -197,16 +197,67 @@ with shared.gradio_root:
queue=False, show_progress=False)
with gr.TabItem(label='Inpaint or Outpaint') as inpaint_tab:
with gr.Row():
inpaint_input_image = grh.Image(label='Drag inpaint or outpaint image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas')
inpaint_mask_image = grh.Image(label='Mask Upload', source='upload', type='numpy', height=500, visible=False)
with gr.Column():
inpaint_input_image = grh.Image(label='Drag inpaint or outpaint image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas')
inpaint_mode = gr.Dropdown(choices=modules.flags.inpaint_options, value=modules.flags.inpaint_option_default, label='Method')
inpaint_additional_prompt = gr.Textbox(placeholder="Describe what you want to inpaint.", elem_id='inpaint_additional_prompt', label='Inpaint Additional Prompt', visible=False)
outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint Direction')
example_inpaint_prompts = gr.Dataset(samples=modules.config.example_inpaint_prompts,
label='Additional Prompt Quick List',
components=[inpaint_additional_prompt],
visible=False)
gr.HTML('* Powered by Fooocus Inpaint Engine <a href="https://github.com/lllyasviel/Fooocus/discussions/414" target="_blank">\U0001F4D4 Document</a>')
example_inpaint_prompts.click(lambda x: x[0], inputs=example_inpaint_prompts, outputs=inpaint_additional_prompt, show_progress=False, queue=False)
with gr.Row():
inpaint_additional_prompt = gr.Textbox(placeholder="Describe what you want to inpaint.", elem_id='inpaint_additional_prompt', label='Inpaint Additional Prompt', visible=False)
outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint Direction')
inpaint_mode = gr.Dropdown(choices=modules.flags.inpaint_options, value=modules.flags.inpaint_option_default, label='Method')
example_inpaint_prompts = gr.Dataset(samples=modules.config.example_inpaint_prompts, label='Additional Prompt Quick List', components=[inpaint_additional_prompt], visible=False)
gr.HTML('* Powered by Fooocus Inpaint Engine <a href="https://github.com/lllyasviel/Fooocus/discussions/414" target="_blank">\U0001F4D4 Document</a>')
example_inpaint_prompts.click(lambda x: x[0], inputs=example_inpaint_prompts, outputs=inpaint_additional_prompt, show_progress=False, queue=False)
with gr.Column(visible=False) as inpaint_mask_generation_col:
inpaint_mask_image = grh.Image(label='Mask Upload', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", mask_opacity=1)
inpaint_mask_model = gr.Dropdown(label='Mask generation model',
choices=flags.inpaint_mask_models,
value=modules.config.default_inpaint_mask_model)
inpaint_mask_cloth_category = gr.Dropdown(label='Cloth category',
choices=flags.inpaint_mask_cloth_category,
value=modules.config.default_inpaint_mask_cloth_category,
visible=False)
inpaint_mask_sam_prompt_text = gr.Textbox(label='Segmentation prompt', value='', visible=False)
with gr.Accordion("Advanced options", visible=False, open=False) as inpaint_mask_advanced_options:
inpaint_mask_sam_model = gr.Dropdown(label='SAM model', choices=flags.inpaint_mask_sam_model, value=modules.config.default_inpaint_mask_sam_model)
inpaint_mask_sam_quant = gr.Checkbox(label='Quantization', value=False)
inpaint_mask_box_threshold = gr.Slider(label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.05)
inpaint_mask_text_threshold = gr.Slider(label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05)
generate_mask_button = gr.Button(value='Generate mask from image')
def generate_mask(image, mask_model, cloth_category, sam_prompt_text, sam_model, sam_quant, box_threshold, text_threshold):
from extras.inpaint_mask import generate_mask_from_image
extras = {}
if mask_model == 'u2net_cloth_seg':
extras['cloth_category'] = cloth_category
elif mask_model == 'sam':
extras['sam_prompt_text'] = sam_prompt_text
extras['sam_model'] = sam_model
extras['sam_quant'] = sam_quant
extras['box_threshold'] = box_threshold
extras['text_threshold'] = text_threshold
return generate_mask_from_image(image, mask_model, extras)
generate_mask_button.click(fn=generate_mask,
inputs=[
inpaint_input_image, inpaint_mask_model,
inpaint_mask_cloth_category,
inpaint_mask_sam_prompt_text,
inpaint_mask_sam_model,
inpaint_mask_sam_quant,
inpaint_mask_box_threshold,
inpaint_mask_text_threshold
],
outputs=inpaint_mask_image, show_progress=True, queue=True)
inpaint_mask_model.change(lambda x: [gr.update(visible=x == 'u2net_cloth_seg'), gr.update(visible=x == 'sam'), gr.update(visible=x == 'sam')],
inputs=inpaint_mask_model,
outputs=[inpaint_mask_cloth_category, inpaint_mask_sam_prompt_text, inpaint_mask_advanced_options],
queue=False, show_progress=False)
with gr.TabItem(label='Describe') as desc_tab:
with gr.Row():
with gr.Column():
@ -497,9 +548,10 @@ with shared.gradio_root:
inpaint_strength, inpaint_respective_field,
inpaint_mask_upload_checkbox, invert_mask_checkbox, inpaint_erode_or_dilate]
inpaint_mask_upload_checkbox.change(lambda x: gr.update(visible=x),
inputs=inpaint_mask_upload_checkbox,
outputs=inpaint_mask_image, queue=False, show_progress=False)
inpaint_mask_upload_checkbox.change(lambda x: [gr.update(visible=x)] * 2,
inputs=inpaint_mask_upload_checkbox,
outputs=[inpaint_mask_image, inpaint_mask_generation_col],
queue=False, show_progress=False)
with gr.Tab(label='FreeU'):
freeu_enabled = gr.Checkbox(label='Enabled', value=False)