[2.1.822] New Inpaint System

See related documents for more details.
This commit is contained in:
lllyasviel 2023-11-19 17:37:22 -08:00 committed by GitHub
parent 8f9f020e8f
commit dececbd060
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 400 additions and 191 deletions

View File

@ -77,9 +77,9 @@ class ModelSamplingDiscrete(torch.nn.Module):
def percent_to_sigma(self, percent):
if percent <= 0.0:
return torch.tensor(999999999.9)
return 999999999.9
if percent >= 1.0:
return torch.tensor(0.0)
return 0.0
percent = 1.0 - percent
return self.sigma(torch.tensor(percent * 999.0))
return self.sigma(torch.tensor(percent * 999.0)).item()

View File

@ -0,0 +1,29 @@
import nodes
MAX_RESOLUTION = nodes.MAX_RESOLUTION
class ImageCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
CATEGORY = "image/transform"
def crop(self, image, width, height, x, y):
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
img = image[:,y:to_y, x:to_x, :]
return (img,)
NODE_CLASS_MAPPINGS = {
"ImageCrop": ImageCrop,
}

View File

@ -67,11 +67,11 @@ class ModelSamplingDiscreteLCM(torch.nn.Module):
def percent_to_sigma(self, percent):
if percent <= 0.0:
return torch.tensor(999999999.9)
return 999999999.9
if percent >= 1.0:
return torch.tensor(0.0)
return 0.0
percent = 1.0 - percent
return self.sigma(torch.tensor(percent * 999.0))
return self.sigma(torch.tensor(percent * 999.0)).item()
def rescale_zero_terminal_snr_sigmas(sigmas):

View File

@ -16,8 +16,8 @@ class PatchModelAddDownscale:
CATEGORY = "_for_testing"
def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip):
sigma_start = model.model.model_sampling.percent_to_sigma(start_percent).item()
sigma_end = model.model.model_sampling.percent_to_sigma(end_percent).item()
sigma_start = model.model.model_sampling.percent_to_sigma(start_percent)
sigma_end = model.model.model_sampling.percent_to_sigma(end_percent)
def input_block_patch(h, transformer_options):
if transformer_options["block"][1] == block_number:

View File

@ -1800,6 +1800,7 @@ def init_custom_nodes():
"nodes_hypertile.py",
"nodes_model_advanced.py",
"nodes_model_downscale.py",
"nodes_images.py",
]
for node_file in extras_files:

View File

@ -1 +1 @@
version = '2.1.821'
version = '2.1.822'

View File

@ -2,9 +2,10 @@ disable_preview, adm_scaler_positive, adm_scaler_negative, adm_scaler_end, adapt
scheduler_name, generate_image_grid, overwrite_step, overwrite_switch, overwrite_width, overwrite_height, \
overwrite_vary_strength, overwrite_upscale_strength, \
mixing_image_prompt_and_vary_upscale, mixing_image_prompt_and_inpaint, \
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness, canny_low_threshold, canny_high_threshold, inpaint_engine, \
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness, canny_low_threshold, canny_high_threshold, \
refiner_swap_method, \
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2 = [None] * 28
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2, \
debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine, inpaint_strength, inpaint_respective_field = [None] * 32
def set_all_advanced_parameters(*args):
@ -12,16 +13,18 @@ def set_all_advanced_parameters(*args):
scheduler_name, generate_image_grid, overwrite_step, overwrite_switch, overwrite_width, overwrite_height, \
overwrite_vary_strength, overwrite_upscale_strength, \
mixing_image_prompt_and_vary_upscale, mixing_image_prompt_and_inpaint, \
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness, canny_low_threshold, canny_high_threshold, inpaint_engine, \
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness, canny_low_threshold, canny_high_threshold, \
refiner_swap_method, \
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2, \
debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine, inpaint_strength, inpaint_respective_field
disable_preview, adm_scaler_positive, adm_scaler_negative, adm_scaler_end, adaptive_cfg, sampler_name, \
scheduler_name, generate_image_grid, overwrite_step, overwrite_switch, overwrite_width, overwrite_height, \
overwrite_vary_strength, overwrite_upscale_strength, \
mixing_image_prompt_and_vary_upscale, mixing_image_prompt_and_inpaint, \
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness, canny_low_threshold, canny_high_threshold, inpaint_engine, \
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness, canny_low_threshold, canny_high_threshold, \
refiner_swap_method, \
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2 = args
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2, \
debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine, inpaint_strength, inpaint_respective_field = args
return

View File

@ -130,13 +130,14 @@ def worker():
base_model_name = args.pop()
refiner_model_name = args.pop()
refiner_switch = args.pop()
loras = [(args.pop(), args.pop()) for _ in range(5)]
loras = [[str(args.pop()), float(args.pop())] for _ in range(5)]
input_image_checkbox = args.pop()
current_tab = args.pop()
uov_method = args.pop()
uov_input_image = args.pop()
outpaint_selections = args.pop()
inpaint_input_image = args.pop()
inpaint_additional_prompt = args.pop()
cn_tasks = {x: [] for x in flags.ip_list}
for _ in range(4):
@ -177,7 +178,7 @@ def worker():
if performance_selection == 'Extreme Speed':
print('Enter LCM mode.')
progressbar(async_task, 1, 'Downloading LCM components ...')
base_model_additional_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
if refiner_model_name != 'None':
print(f'Refiner disabled in LCM mode.')
@ -203,8 +204,10 @@ def worker():
modules.patch.positive_adm_scale = advanced_parameters.adm_scaler_positive
modules.patch.negative_adm_scale = advanced_parameters.adm_scaler_negative
modules.patch.adm_scaler_end = advanced_parameters.adm_scaler_end
print(
f'[Parameters] ADM Scale = {modules.patch.positive_adm_scale} : {modules.patch.negative_adm_scale} : {modules.patch.adm_scaler_end}')
print(f'[Parameters] ADM Scale = '
f'{modules.patch.positive_adm_scale} : '
f'{modules.patch.negative_adm_scale} : '
f'{modules.patch.adm_scaler_end}')
cfg_scale = float(guidance_scale)
print(f'[Parameters] CFG = {cfg_scale}')
@ -212,7 +215,6 @@ def worker():
initial_latent = None
denoising_strength = 1.0
tiled = False
inpaint_worker.current_task = None
width, height = aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
width, height = int(width), int(height)
@ -220,9 +222,14 @@ def worker():
skip_prompt_processing = False
refiner_swap_method = advanced_parameters.refiner_swap_method
inpaint_worker.current_task = None
inpaint_parameterized = advanced_parameters.inpaint_engine != 'None'
inpaint_image = None
inpaint_mask = None
inpaint_head_model_path = None
use_synthetic_refiner = False
controlnet_canny_path = None
controlnet_cpds_path = None
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None
@ -269,11 +276,24 @@ def worker():
inpaint_image = HWC3(inpaint_image)
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
progressbar(async_task, 1, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
advanced_parameters.inpaint_engine)
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
if inpaint_parameterized:
progressbar(async_task, 1, 'Downloading inpainter ...')
modules.config.downloading_upscale_model()
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
advanced_parameters.inpaint_engine)
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
if refiner_model_name == 'None':
use_synthetic_refiner = True
refiner_switch = 0.5
else:
inpaint_head_model_path, inpaint_patch_model_path = None, None
print(f'[Inpaint] Parameterized inpaint is disabled.')
if inpaint_additional_prompt != '':
if prompt == '':
prompt = inpaint_additional_prompt
else:
prompt = inpaint_additional_prompt + '\n' + prompt
goals.append('inpaint')
if current_tab == 'ip' or \
advanced_parameters.mixing_image_prompt_and_inpaint or \
@ -332,7 +352,8 @@ def worker():
progressbar(async_task, 3, 'Loading models ...')
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name,
loras=loras, base_model_additional_loras=base_model_additional_loras)
loras=loras, base_model_additional_loras=base_model_additional_loras,
use_synthetic_refiner=use_synthetic_refiner)
progressbar(async_task, 3, 'Processing prompts ...')
tasks = []
@ -375,8 +396,8 @@ def worker():
uc=None,
positive_top_k=len(positive_basic_workloads),
negative_top_k=len(negative_basic_workloads),
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
log_positive_prompt='; '.join([task_prompt] + task_extra_positive_prompts),
log_negative_prompt='; '.join([task_negative_prompt] + task_extra_negative_prompts),
))
if use_expansion:
@ -421,7 +442,15 @@ def worker():
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
initial_latent = core.encode_vae(vae=pipeline.final_vae, pixels=initial_pixels)
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
@ -430,10 +459,7 @@ def worker():
if 'upscale' in goals:
H, W, C = uov_input_image.shape
progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...')
uov_input_image = core.numpy_to_pytorch(uov_input_image)
uov_input_image = perform_upscale(uov_input_image)
uov_input_image = core.pytorch_to_numpy(uov_input_image)[0]
print(f'Image upscaled.')
if '1.5x' in uov_method:
@ -479,14 +505,20 @@ def worker():
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
initial_latent = core.encode_vae(
vae=pipeline.final_vae if pipeline.final_refiner_vae is None else pipeline.final_refiner_vae,
vae=candidate_vae,
pixels=initial_pixels, tiled=True)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
refiner_swap_method = 'upscale'
if 'inpaint' in goals:
if len(outpaint_selections) > 0:
@ -512,13 +544,19 @@ def worker():
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
advanced_parameters.inpaint_strength = 1.0
advanced_parameters.inpaint_respective_field = 1.0
inpaint_worker.current_task = inpaint_worker.InpaintWorker(image=inpaint_image, mask=inpaint_mask,
is_outpaint=len(outpaint_selections) > 0)
denoising_strength = advanced_parameters.inpaint_strength
pipeline.final_unet.model.diffusion_model.in_inpaint = True
inpaint_worker.current_task = inpaint_worker.InpaintWorker(
image=inpaint_image,
mask=inpaint_mask,
use_fill=denoising_strength > 0.99,
k=advanced_parameters.inpaint_respective_field
)
if advanced_parameters.debugging_cn_preprocessor:
if advanced_parameters.debugging_inpaint_preprocessor:
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(),
do_not_show_finished_images=True)
return
@ -529,33 +567,47 @@ def worker():
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
latent_inpaint, latent_mask = core.encode_vae_inpaint(
mask=inpaint_pixel_mask,
vae=pipeline.final_vae,
vae=candidate_vae,
pixels=inpaint_pixel_image)
latent_swap = None
if pipeline.final_refiner_vae is not None:
progressbar(async_task, 13, 'VAE Inpaint SD15 encoding ...')
if candidate_vae_swap is not None:
progressbar(async_task, 13, 'VAE SD15 encoding ...')
latent_swap = core.encode_vae(
vae=pipeline.final_refiner_vae,
vae=candidate_vae_swap,
pixels=inpaint_pixel_fill)['samples']
progressbar(async_task, 13, 'VAE encoding ...')
latent_fill = core.encode_vae(
vae=pipeline.final_vae,
vae=candidate_vae,
pixels=inpaint_pixel_fill)['samples']
inpaint_worker.current_task.load_latent(latent_fill=latent_fill,
latent_inpaint=latent_inpaint,
latent_mask=latent_mask,
latent_swap=latent_swap,
inpaint_head_model_path=inpaint_head_model_path)
inpaint_worker.current_task.load_latent(
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)
if inpaint_parameterized:
pipeline.final_unet = inpaint_worker.current_task.patch(
inpaint_head_model_path=inpaint_head_model_path,
inpaint_latent=latent_inpaint,
inpaint_latent_mask=latent_mask,
model=pipeline.final_unet
)
if not advanced_parameters.inpaint_disable_initial_latent:
initial_latent = {'samples': latent_fill}
B, C, H, W = latent_fill.shape
height, width = H * 8, W * 8
final_height, final_width = inpaint_worker.current_task.image.shape[:2]
initial_latent = {'samples': latent_fill}
print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.')
if 'cn' in goals:
@ -626,6 +678,15 @@ def worker():
all_steps = steps * image_number
print(f'[Parameters] Denoising Strength = {denoising_strength}')
if isinstance(initial_latent, dict) and 'samples' in initial_latent:
log_shape = initial_latent['samples'].shape
else:
log_shape = f'Image Space {(height, width)}'
print(f'[Parameters] Initial Latent shape: {log_shape}')
preparation_time = time.perf_counter() - execution_start_time
print(f'Preparation time: {preparation_time:.2f} seconds')

View File

@ -303,6 +303,15 @@ default_overwrite_switch = get_config_item_or_set_default(
default_value=-1,
validator=lambda x: isinstance(x, int)
)
example_inpaint_prompts = get_config_item_or_set_default(
key='example_inpaint_prompts',
default_value=[
'highly detailed face', 'detailed girl face', 'detailed man face', 'detailed hand', 'beautiful eyes'
],
validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x)
)
example_inpaint_prompts = [[x] for x in example_inpaint_prompts]
config_dict["default_loras"] = default_loras = default_loras[:5] + [['None', 1.0] for _ in range(5 - len(default_loras))]
@ -425,7 +434,7 @@ def downloading_sdxl_lcm_lora():
model_dir=path_loras,
file_name='sdxl_lcm_lora.safetensors'
)
return os.path.join(path_loras, 'sdxl_lcm_lora.safetensors')
return 'sdxl_lcm_lora.safetensors'
def downloading_controlnet_canny():

View File

@ -52,10 +52,12 @@ class StableDiffusionModel:
self.visited_loras = ''
self.lora_key_map = {}
if self.unet is not None and self.clip is not None:
if self.unet is not None:
self.lora_key_map = model_lora_keys_unet(self.unet.model, self.lora_key_map)
self.lora_key_map = model_lora_keys_clip(self.clip.cond_stage_model, self.lora_key_map)
self.lora_key_map.update({x: x for x in self.unet.model.state_dict().keys()})
if self.clip is not None:
self.lora_key_map = model_lora_keys_clip(self.clip.cond_stage_model, self.lora_key_map)
self.lora_key_map.update({x: x for x in self.clip.cond_stage_model.state_dict().keys()})
@torch.no_grad()

View File

@ -194,8 +194,10 @@ def prepare_text_encoder(async_call=True):
@torch.no_grad()
@torch.inference_mode()
def refresh_everything(refiner_model_name, base_model_name, loras, base_model_additional_loras=None):
global final_unet, final_clip, final_vae, final_refiner_unet, final_refiner_vae, final_expansion
def refresh_everything(refiner_model_name, base_model_name, loras,
base_model_additional_loras=None, use_synthetic_refiner=False):
global final_unet, final_clip, final_vae, final_refiner_unet, final_refiner_vae, \
final_expansion, model_refiner, model_base
final_unet = None
final_clip = None
@ -203,8 +205,23 @@ def refresh_everything(refiner_model_name, base_model_name, loras, base_model_ad
final_refiner_unet = None
final_refiner_vae = None
refresh_refiner_model(refiner_model_name)
refresh_base_model(base_model_name)
if use_synthetic_refiner and refiner_model_name == 'None':
print('Synthetic Refiner Activated')
refresh_base_model(base_model_name)
model_refiner = core.StableDiffusionModel(
unet=model_base.unet,
vae=model_base.vae,
clip=model_base.clip,
clip_vision=model_base.clip_vision,
filename=model_base.filename
)
model_refiner.vae = None
model_refiner.clip = None
model_refiner.clip_vision = None
else:
refresh_refiner_model(refiner_model_name)
refresh_base_model(base_model_name)
refresh_loras(loras, base_model_additional_loras=base_model_additional_loras)
assert_model_integrity()
@ -212,14 +229,9 @@ def refresh_everything(refiner_model_name, base_model_name, loras, base_model_ad
final_clip = model_base.clip_with_lora
final_vae = model_base.vae
final_unet.model.diffusion_model.in_inpaint = False
final_refiner_unet = model_refiner.unet_with_lora
final_refiner_vae = model_refiner.vae
if final_refiner_unet is not None:
final_refiner_unet.model.diffusion_model.in_inpaint = False
if final_expansion is None:
final_expansion = FooocusExpansion()
@ -276,32 +288,52 @@ def calculate_sigmas(sampler, model, scheduler, steps, denoise):
@torch.no_grad()
@torch.inference_mode()
def process_diffusion(positive_cond, negative_cond, steps, switch, width, height, image_seed, callback, sampler_name, scheduler_name, latent=None, denoise=1.0, tiled=False, cfg_scale=7.0, refiner_swap_method='joint'):
global final_unet, final_refiner_unet, final_vae, final_refiner_vae
def get_candidate_vae(steps, switch, denoise=1.0, refiner_swap_method='joint'):
assert refiner_swap_method in ['joint', 'separate', 'vae']
assert refiner_swap_method in ['joint', 'separate', 'vae', 'upscale']
refiner_use_different_vae = final_refiner_vae is not None and final_refiner_unet is not None
if refiner_swap_method == 'upscale':
if not refiner_use_different_vae:
refiner_swap_method = 'joint'
else:
if refiner_use_different_vae:
if denoise > 0.95:
refiner_swap_method = 'vae'
if final_refiner_vae is not None and final_refiner_unet is not None:
if denoise > 0.9:
return final_vae, final_refiner_vae
else:
if denoise > (float(steps - switch) / float(steps)) ** 0.834: # karras 0.834
return final_vae, None
else:
# VAE swap only support full denoise
# Disable refiner to avoid SD15 in joint/separate swap
final_refiner_unet = None
final_refiner_vae = None
return final_refiner_vae, None
return final_vae, final_refiner_vae
@torch.no_grad()
@torch.inference_mode()
def process_diffusion(positive_cond, negative_cond, steps, switch, width, height, image_seed, callback, sampler_name, scheduler_name, latent=None, denoise=1.0, tiled=False, cfg_scale=7.0, refiner_swap_method='joint'):
target_unet, target_vae, target_refiner_unet, target_refiner_vae, target_clip \
= final_unet, final_vae, final_refiner_unet, final_refiner_vae, final_clip
assert refiner_swap_method in ['joint', 'separate', 'vae']
if final_refiner_vae is not None and final_refiner_unet is not None:
# Refiner Use Different VAE (then it is SD15)
if denoise > 0.9:
refiner_swap_method = 'vae'
else:
refiner_swap_method = 'joint'
if denoise > (float(steps - switch) / float(steps)) ** 0.834: # karras 0.834
target_unet, target_vae, target_refiner_unet, target_refiner_vae \
= final_unet, final_vae, None, None
print(f'[Sampler] only use Base because of partial denoise.')
else:
positive_cond = clip_separate(positive_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
negative_cond = clip_separate(negative_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
target_unet, target_vae, target_refiner_unet, target_refiner_vae \
= final_refiner_unet, final_refiner_vae, None, None
print(f'[Sampler] only use Refiner because of partial denoise.')
print(f'[Sampler] refiner_swap_method = {refiner_swap_method}')
if latent is None:
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
initial_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
else:
empty_latent = latent
initial_latent = latent
minmax_sigmas = calculate_sigmas(sampler=sampler_name, scheduler=scheduler_name, model=final_unet.model, steps=steps, denoise=denoise)
sigma_min, sigma_max = minmax_sigmas[minmax_sigmas > 0].min(), minmax_sigmas.max()
@ -310,18 +342,18 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
print(f'[Sampler] sigma_min = {sigma_min}, sigma_max = {sigma_max}')
modules.patch.BrownianTreeNoiseSamplerPatched.global_init(
empty_latent['samples'].to(fcbh.model_management.get_torch_device()),
initial_latent['samples'].to(fcbh.model_management.get_torch_device()),
sigma_min, sigma_max, seed=image_seed, cpu=False)
decoded_latent = None
if refiner_swap_method == 'joint':
sampled_latent = core.ksampler(
model=final_unet,
refiner=final_refiner_unet,
model=target_unet,
refiner=target_refiner_unet,
positive=positive_cond,
negative=negative_cond,
latent=empty_latent,
latent=initial_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
@ -333,32 +365,14 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
previewer_start=0,
previewer_end=steps,
)
decoded_latent = core.decode_vae(vae=final_vae, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'upscale':
sampled_latent = core.ksampler(
model=final_refiner_unet,
positive=clip_separate(positive_cond, target_model=final_refiner_unet.model, target_clip=final_clip),
negative=clip_separate(negative_cond, target_model=final_refiner_unet.model, target_clip=final_clip),
latent=empty_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=0,
previewer_end=steps,
)
decoded_latent = core.decode_vae(vae=final_refiner_vae, latent_image=sampled_latent, tiled=tiled)
decoded_latent = core.decode_vae(vae=target_vae, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'separate':
sampled_latent = core.ksampler(
model=final_unet,
model=target_unet,
positive=positive_cond,
negative=negative_cond,
latent=empty_latent,
latent=initial_latent,
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=False,
seed=image_seed,
denoise=denoise,
@ -371,15 +385,15 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
)
print('Refiner swapped by changing ksampler. Noise preserved.')
target_model = final_refiner_unet
target_model = target_refiner_unet
if target_model is None:
target_model = final_unet
target_model = target_unet
print('Use base model to refine itself - this may because of developer mode.')
sampled_latent = core.ksampler(
model=target_model,
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=final_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=final_clip),
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
latent=sampled_latent,
steps=steps, start_step=switch, last_step=steps, disable_noise=True, force_full_denoise=True,
seed=image_seed,
@ -392,9 +406,9 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
previewer_end=steps,
)
target_model = final_refiner_vae
target_model = target_refiner_vae
if target_model is None:
target_model = final_vae
target_model = target_vae
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'vae':
@ -404,10 +418,10 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
modules.inpaint_worker.current_task.unswap()
sampled_latent = core.ksampler(
model=final_unet,
model=target_unet,
positive=positive_cond,
negative=negative_cond,
latent=empty_latent,
latent=initial_latent,
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
@ -420,9 +434,9 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
)
print('Fooocus VAE-based swap.')
target_model = final_refiner_unet
target_model = target_refiner_unet
if target_model is None:
target_model = final_unet
target_model = target_unet
print('Use base model to refine itself - this may because of developer mode.')
sampled_latent = vae_parse(sampled_latent)
@ -442,8 +456,8 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
sampled_latent = core.ksampler(
model=target_model,
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=final_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=final_clip),
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
latent=sampled_latent,
steps=len_sigmas, start_step=0, last_step=len_sigmas, disable_noise=False, force_full_denoise=True,
seed=image_seed+1,
@ -458,9 +472,9 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
noise_mean=noise_mean
)
target_model = final_refiner_vae
target_model = target_refiner_vae
if target_model is None:
target_model = final_vae
target_model = target_vae
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
images = core.pytorch_to_numpy(decoded_latent)

View File

@ -32,5 +32,10 @@ default_parameters = {
cn_ip: (0.5, 0.6), cn_ip_face: (0.9, 0.75), cn_canny: (0.5, 1.0), cn_cpds: (0.5, 1.0)
} # stop, weight
inpaint_engine_versions = ['v1', 'v2.5', 'v2.6']
inpaint_engine_versions = ['None', 'v1', 'v2.5', 'v2.6']
performance_selections = ['Speed', 'Quality', 'Extreme Speed']
inpaint_option_default = 'Inpaint or Outpaint (default)'
inpaint_option_detail = 'Improve Detail (face, hand, eyes, etc.)'
inpaint_option_modify = 'Modify Content (add objects, change background, etc.)'
inpaint_options = [inpaint_option_default, inpaint_option_detail, inpaint_option_modify]

View File

@ -1,12 +1,12 @@
import torch
import numpy as np
import modules.default_pipeline as pipeline
from PIL import Image, ImageFilter
from modules.util import resample_image, set_image_shape_ceil
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil
from modules.upscaler import perform_upscale
inpaint_head = None
inpaint_head_model = None
class InpaintHead(torch.nn.Module):
@ -77,29 +77,32 @@ def regulate_abcd(x, a, b, c, d):
def compute_initial_abcd(x):
indices = np.where(x)
a = np.min(indices[0]) - 64
b = np.max(indices[0]) + 65
c = np.min(indices[1]) - 64
d = np.max(indices[1]) + 65
a = np.min(indices[0])
b = np.max(indices[0])
c = np.min(indices[1])
d = np.max(indices[1])
abp = (b + a) // 2
abm = (b - a) // 2
cdp = (d + c) // 2
cdm = (d - c) // 2
l = max(abm, cdm)
l = int(max(abm, cdm) * 1.15)
a = abp - l
b = abp + l
b = abp + l + 1
c = cdp - l
d = cdp + l
d = cdp + l + 1
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def solve_abcd(x, a, b, c, d, outpaint):
def solve_abcd(x, a, b, c, d, k):
k = float(k)
assert 0.0 <= k <= 1.0
H, W = x.shape[:2]
if outpaint:
if k == 1.0:
return 0, H, 0, W
while True:
if b - a > H * 0.618 and d - c > W * 0.618:
if b - a >= H * k and d - c >= W * k:
break
add_h = (b - a) < (d - c)
@ -138,21 +141,30 @@ def fooocus_fill(image, mask):
class InpaintWorker:
def __init__(self, image, mask, is_outpaint):
def __init__(self, image, mask, use_fill=True, k=0.618):
a, b, c, d = compute_initial_abcd(mask > 0)
a, b, c, d = solve_abcd(mask, a, b, c, d, outpaint=is_outpaint)
a, b, c, d = solve_abcd(mask, a, b, c, d, k=k)
# interested area
self.interested_area = (a, b, c, d)
self.interested_mask = mask[a:b, c:d]
self.interested_image = image[a:b, c:d]
# super resolution
if get_image_shape_ceil(self.interested_image) < 1024:
self.interested_image = perform_upscale(self.interested_image)
# resize to make images ready for diffusion
self.interested_image = set_image_shape_ceil(self.interested_image, 1024)
self.interested_fill = self.interested_image.copy()
H, W, C = self.interested_image.shape
# process mask
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
# compute filling
if use_fill:
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
# soft pixels
self.mask = morphological_open(mask)
@ -164,36 +176,40 @@ class InpaintWorker:
self.swapped = False
self.latent_mask = None
self.inpaint_head_feature = None
self.processing_sampler_in = True
self.processing_sampler_out = True
return
def load_latent(self,
latent_fill,
latent_inpaint,
latent_mask,
latent_swap=None,
inpaint_head_model_path=None):
global inpaint_head
assert inpaint_head_model_path is not None
def load_latent(self, latent_fill, latent_mask, latent_swap=None):
self.latent = latent_fill
self.latent_mask = latent_mask
self.latent_after_swap = latent_swap
return
if inpaint_head is None:
inpaint_head = InpaintHead()
def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, model):
global inpaint_head_model
if inpaint_head_model is None:
inpaint_head_model = InpaintHead()
sd = torch.load(inpaint_head_model_path, map_location='cpu')
inpaint_head.load_state_dict(sd)
inpaint_head_model.load_state_dict(sd)
feed = torch.cat([
latent_mask,
pipeline.final_unet.model.process_latent_in(latent_inpaint)
inpaint_latent_mask,
model.model.process_latent_in(inpaint_latent)
], dim=1)
inpaint_head.to(device=feed.device, dtype=feed.dtype)
self.inpaint_head_feature = inpaint_head(feed)
inpaint_head_model.to(device=feed.device, dtype=feed.dtype)
inpaint_head_feature = inpaint_head_model(feed)
return
def input_block_patch(h, transformer_options):
if transformer_options["block"][1] == 0:
h = h + inpaint_head_feature.to(h)
return h
m = model.clone()
m.set_model_input_block_patch(input_block_patch)
return m
def swap(self):
if self.swapped:
@ -239,5 +255,5 @@ class InpaintWorker:
return result
def visualize_mask_processing(self):
return [self.interested_fill, self.interested_mask, self.image, self.mask]
return [self.interested_fill, self.interested_mask, self.interested_image]

View File

@ -304,16 +304,19 @@ def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs):
def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
if inpaint_worker.current_task is not None:
latent_processor = self.inner_model.inner_model.process_latent_in
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
if getattr(self, 'energy_generator', None) is None:
# avoid bad results by using different seeds.
self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED)
latent_processor = self.inner_model.inner_model.process_latent_in
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1))
current_energy = torch.randn(x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask)
if inpaint_worker.current_task.processing_sampler_in:
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1))
current_energy = torch.randn(
x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask)
out = self.inner_model(x, sigma,
cond=cond,
@ -322,7 +325,8 @@ def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale,
model_options=model_options,
seed=seed)
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask)
if inpaint_worker.current_task.processing_sampler_out:
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask)
else:
out = self.inner_model(x, sigma,
cond=cond,
@ -403,10 +407,6 @@ def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=
self.current_step = 1.0 - timesteps.to(x) / 999.0
global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0])
inpaint_fix = None
if getattr(self, 'in_inpaint', False) and inpaint_worker.current_task is not None:
inpaint_fix = inpaint_worker.current_task.inpaint_head_feature
transformer_options["original_shape"] = list(x.shape)
transformer_options["current_index"] = 0
transformer_patches = transformer_options.get("patches", {})
@ -426,12 +426,6 @@ def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=
for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
h = forward_timestep_embed(module, h, emb, context, transformer_options)
if inpaint_fix is not None:
if int(h.shape[1]) == int(inpaint_fix.shape[1]):
h = h + inpaint_fix.to(h)
inpaint_fix = None
h = apply_control(h, control, 'input')
if "input_block_patch" in transformer_patches:
patch = transformer_patches["input_block_patch"]

View File

@ -1,5 +1,6 @@
import os
import torch
import modules.core as core
from fcbh_extras.chainner_models.architecture.RRDB import RRDBNet as ESRGAN
from fcbh_extras.nodes_upscale_model import ImageUpscaleWithModel
@ -13,6 +14,9 @@ model = None
def perform_upscale(img):
global model
print(f'Upscaling image with shape {str(img.shape)} ...')
if model is None:
sd = torch.load(model_filename)
sdo = OrderedDict()
@ -22,4 +26,9 @@ def perform_upscale(img):
model = ESRGAN(sdo)
model.cpu()
model.eval()
return opImageUpscaleWithModel.upscale(model, img)[0]
img = core.numpy_to_pytorch(img)
img = opImageUpscaleWithModel.upscale(model, img)[0]
img = core.pytorch_to_numpy(img)[0]
return img

View File

@ -79,7 +79,7 @@ def get_shape_ceil(h, w):
def get_image_shape_ceil(im):
H, W, _ = im.shape
H, W = im.shape[:2]
return get_shape_ceil(H, W)

View File

@ -1,7 +1,7 @@
{
"default_model": "sd_xl_base_1.0_0.9vae.safetensors",
"default_refiner": "sd_xl_refiner_1.0_0.9vae.safetensors",
"default_refiner_switch": 0.7,
"default_refiner_switch": 0.75,
"default_loras": [
[
"sd_xl_offset_example-lora_1.0.safetensors",

View File

@ -1,3 +1,7 @@
# 2.1.822
* New inpaint system (inpaint beta test ends).
# 2.1.821
* New UI for LoRAs.

View File

@ -22,6 +22,11 @@ from modules.auth import auth_enabled, check_auth
def generate_clicked(*args):
import fcbh.model_management as model_management
with model_management.interrupt_processing_mutex:
model_management.interrupt_processing = False
# outputs=[progress_html, progress_window, progress_gallery, gallery]
execution_start_time = time.perf_counter()
@ -178,11 +183,15 @@ with shared.gradio_root:
outputs=ip_ad_cols + ip_types + ip_stops + ip_weights,
queue=False, show_progress=False)
with gr.TabItem(label='Inpaint or Outpaint (beta)') as inpaint_tab:
with gr.TabItem(label='Inpaint or Outpaint') as inpaint_tab:
inpaint_input_image = grh.Image(label='Drag above image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas')
gr.HTML('Outpaint Expansion Direction:')
outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint', show_label=False, container=False)
gr.HTML('* Powered by Fooocus Inpaint Engine (beta) <a href="https://github.com/lllyasviel/Fooocus/discussions/414" target="_blank">\U0001F4D4 Document</a>')
with gr.Row():
inpaint_additional_prompt = gr.Textbox(placeholder="Describe what you want to inpaint.", elem_id='inpaint_additional_prompt', label='Inpaint Additional Prompt', visible=False)
outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint Direction')
inpaint_mode = gr.Dropdown(choices=modules.flags.inpaint_options, value=modules.flags.inpaint_option_default, label='Method')
example_inpaint_prompts = gr.Dataset(samples=modules.config.example_inpaint_prompts, label='Additional Prompt Quick List', components=[inpaint_additional_prompt], visible=False)
gr.HTML('* Powered by Fooocus Inpaint Engine <a href="https://github.com/lllyasviel/Fooocus/discussions/414" target="_blank">\U0001F4D4 Document</a>')
example_inpaint_prompts.click(lambda x: x[0], inputs=example_inpaint_prompts, outputs=inpaint_additional_prompt, show_progress=False, queue=False)
switch_js = "(x) => {if(x){viewer_to_bottom(100);viewer_to_bottom(500);}else{viewer_to_top();} return x;}"
down_js = "() => {viewer_to_bottom();}"
@ -297,15 +306,17 @@ with shared.gradio_root:
with gr.Row():
model_refresh = gr.Button(label='Refresh', value='\U0001f504 Refresh All Files', variant='secondary', elem_classes='refresh_button')
with gr.Tab(label='Advanced'):
sharpness = gr.Slider(label='Sampling Sharpness', minimum=0.0, maximum=30.0, step=0.001, value=modules.config.default_sample_sharpness,
guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=30.0, step=0.01,
value=modules.config.default_cfg_scale,
info='Higher value means style is cleaner, vivider, and more artistic.')
sharpness = gr.Slider(label='Image Sharpness', minimum=0.0, maximum=30.0, step=0.001,
value=modules.config.default_sample_sharpness,
info='Higher value means image and texture are sharper.')
guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=30.0, step=0.01, value=modules.config.default_cfg_scale,
info='Higher value means style is cleaner, vivider, and more artistic.')
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/117" target="_blank">\U0001F4D4 Document</a>')
dev_mode = gr.Checkbox(label='Developer Debug Mode', value=False, container=False)
with gr.Column(visible=False) as dev_tools:
with gr.Tab(label='Developer Debug Tools'):
with gr.Tab(label='Debug Tools'):
adm_scaler_positive = gr.Slider(label='Positive ADM Guidance Scaler', minimum=0.1, maximum=3.0,
step=0.001, value=1.5, info='The scaler multiplied to positive ADM (use 1.0 to disable). ')
adm_scaler_negative = gr.Slider(label='Negative ADM Guidance Scaler', minimum=0.1, maximum=3.0,
@ -352,14 +363,10 @@ with shared.gradio_root:
overwrite_upscale_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Upscale"',
minimum=-1, maximum=1.0, step=0.001, value=-1,
info='Set as negative number to disable. For developer debugging.')
inpaint_engine = gr.Dropdown(label='Inpaint Engine',
value=modules.config.default_inpaint_engine_version,
choices=flags.inpaint_engine_versions,
info='Version of Fooocus inpaint model')
disable_preview = gr.Checkbox(label='Disable Preview', value=False,
info='Disable preview during generation.')
with gr.Tab(label='Control Debug'):
with gr.Tab(label='Control'):
debugging_cn_preprocessor = gr.Checkbox(label='Debug Preprocessors', value=False,
info='See the results from preprocessors.')
skipping_cn_preprocessor = gr.Checkbox(label='Skip Preprocessors', value=False,
@ -380,6 +387,27 @@ with shared.gradio_root:
canny_high_threshold = gr.Slider(label='Canny High Threshold', minimum=1, maximum=255,
step=1, value=128)
with gr.Tab(label='Inpaint'):
debugging_inpaint_preprocessor = gr.Checkbox(label='Debug Inpaint Preprocessing', value=False)
inpaint_disable_initial_latent = gr.Checkbox(label='Disable initial latent in inpaint', value=False)
inpaint_engine = gr.Dropdown(label='Inpaint Engine',
value=modules.config.default_inpaint_engine_version,
choices=flags.inpaint_engine_versions,
info='Version of Fooocus inpaint model')
inpaint_strength = gr.Slider(label='Inpaint Denoising Strength',
minimum=0.0, maximum=1.0, step=0.001, value=1.0,
info='Same as the denoising strength in A1111 inpaint. '
'Only used in inpaint, not used in outpaint. '
'(Outpaint always use 1.0)')
inpaint_respective_field = gr.Slider(label='Inpaint Respective Field',
minimum=0.0, maximum=1.0, step=0.001, value=0.618,
info='The area to inpaint. '
'Value 0 is same as "Only Masked" in A1111. '
'Value 1 is same as "Whole Image" in A1111. '
'Only used in inpaint, not used in outpaint. '
'(Outpaint always use 1.0)')
inpaint_ctrls = [debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine, inpaint_strength, inpaint_respective_field]
with gr.Tab(label='FreeU'):
freeu_enabled = gr.Checkbox(label='Enabled', value=False)
freeu_b1 = gr.Slider(label='B1', minimum=0, maximum=2, step=0.01, value=1.01)
@ -392,9 +420,10 @@ with shared.gradio_root:
scheduler_name, generate_image_grid, overwrite_step, overwrite_switch, overwrite_width, overwrite_height,
overwrite_vary_strength, overwrite_upscale_strength,
mixing_image_prompt_and_vary_upscale, mixing_image_prompt_and_inpaint,
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness, canny_low_threshold, canny_high_threshold,
inpaint_engine, refiner_swap_method]
debugging_cn_preprocessor, skipping_cn_preprocessor, controlnet_softness,
canny_low_threshold, canny_high_threshold, refiner_swap_method]
adps += freeu_ctrls
adps += inpaint_ctrls
def dev_mode_checked(r):
return gr.update(visible=r)
@ -426,6 +455,39 @@ with shared.gradio_root:
queue=False, show_progress=False) \
.then(fn=lambda: None, _js='refresh_grid_delayed', queue=False, show_progress=False)
def inpaint_mode_change(mode):
assert mode in modules.flags.inpaint_options
# inpaint_additional_prompt, outpaint_selections, example_inpaint_prompts,
# inpaint_disable_initial_latent, inpaint_engine,
# inpaint_strength, inpaint_respective_field
if mode == modules.flags.inpaint_option_detail:
return [
gr.update(visible=True), gr.update(visible=False, value=[]),
gr.Dataset.update(visible=True, samples=modules.config.example_inpaint_prompts),
False, 'None', 0.5, 0.0
]
if mode == modules.flags.inpaint_option_modify:
return [
gr.update(visible=True), gr.update(visible=False, value=[]),
gr.Dataset.update(visible=False, samples=modules.config.example_inpaint_prompts),
True, modules.config.default_inpaint_engine_version, 1.0, 0.0
]
return [
gr.update(visible=False, value=''), gr.update(visible=True),
gr.Dataset.update(visible=False, samples=modules.config.example_inpaint_prompts),
False, modules.config.default_inpaint_engine_version, 1.0, 0.618
]
inpaint_mode.input(inpaint_mode_change, inputs=inpaint_mode, outputs=[
inpaint_additional_prompt, outpaint_selections, example_inpaint_prompts,
inpaint_disable_initial_latent, inpaint_engine,
inpaint_strength, inpaint_respective_field
], show_progress=False, queue=False)
ctrls = [
prompt, negative_prompt, style_selections,
performance_selection, aspect_ratios_selection, image_number, image_seed, sharpness, guidance_scale
@ -434,7 +496,7 @@ with shared.gradio_root:
ctrls += [base_model, refiner_model, refiner_switch] + lora_ctrls
ctrls += [input_image_checkbox, current_tab]
ctrls += [uov_method, uov_input_image]
ctrls += [outpaint_selections, inpaint_input_image]
ctrls += [outpaint_selections, inpaint_input_image, inpaint_additional_prompt]
ctrls += ip_ctrls
generate_button.click(lambda: (gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=False), []), outputs=[stop_button, skip_button, generate_button, gallery]) \