This commit is contained in:
lvmin 2023-08-10 08:08:04 -07:00
parent 93fdeb6345
commit 8e08e3612f
2 changed files with 54 additions and 32 deletions

View File

@ -2,13 +2,17 @@ import random
import torch
import numpy as np
import comfy.model_management
import comfy.sample
import comfy.utils
import latent_preview
from comfy.sd import load_checkpoint_guess_config
from nodes import VAEDecode, KSamplerAdvanced, EmptyLatentImage, CLIPTextEncode
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode, common_ksampler
opCLIPTextEncode = CLIPTextEncode()
opEmptyLatentImage = EmptyLatentImage()
opKSamplerAdvanced = KSamplerAdvanced()
opVAEDecode = VAEDecode()
@ -42,24 +46,42 @@ def decode_vae(vae, latent_image):
@torch.no_grad()
def ksample(unet, positive_condition, negative_condition, latent_image, add_noise=True, noise_seed=None, steps=25, cfg=9,
sampler_name='euler_ancestral', scheduler='normal', start_at_step=None, end_at_step=None,
return_with_leftover_noise=False):
return opKSamplerAdvanced.sample(
add_noise='enable' if add_noise else 'disable',
noise_seed=noise_seed if isinstance(noise_seed, int) else random.randint(1, 2 ** 64),
steps=steps,
cfg=cfg,
sampler_name=sampler_name,
scheduler=scheduler,
start_at_step=0 if start_at_step is None else start_at_step,
end_at_step=steps if end_at_step is None else end_at_step,
return_with_leftover_noise='enable' if return_with_leftover_noise else 'disable',
model=unet,
positive=positive_condition,
negative=negative_condition,
latent_image=latent_image,
)[0]
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='euler_ancestral', scheduler='normal', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = latent_preview.get_previewer(device, model.model.latent_format)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
out = latent.copy()
out["samples"] = samples
return (out, )
@torch.no_grad()

View File

@ -23,20 +23,20 @@ def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_siz
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size)
sampled_latent = core.ksample(
unet=xl_base.unet,
positive_condition=positive_conditions,
negative_condition=negative_conditions,
latent_image=empty_latent,
steps=30, start_at_step=0, end_at_step=20, return_with_leftover_noise=True, add_noise=True
sampled_latent = core.ksampler(
model=xl_base.unet,
positive=positive_conditions,
negative=negative_conditions,
latent=empty_latent,
steps=30, start_step=0, last_step=20, disable_noise=False, force_full_denoise=False
)
sampled_latent = core.ksample(
unet=xl_refiner.unet,
positive_condition=positive_conditions_refiner,
negative_condition=negative_conditions_refiner,
latent_image=sampled_latent,
steps=30, start_at_step=20, end_at_step=30, return_with_leftover_noise=False, add_noise=False
sampled_latent = core.ksampler(
model=xl_refiner.unet,
positive=positive_conditions_refiner,
negative=negative_conditions_refiner,
latent=sampled_latent,
steps=30, start_step=20, last_step=30, disable_noise=True, force_full_denoise=True
)
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)