[enhance]: use opencv to rewrite morphological_open(), achieve a 40x speed increase in morphological_open opporation, for inpanting images size smaller than 3k (#2016)
Co-authored-by: 雷晨曦 <leichenxi@qiyi.com>
This commit is contained in:
parent
1cc40d24d7
commit
80068a0cd7
@ -4,6 +4,7 @@ import numpy as np
|
||||
from PIL import Image, ImageFilter
|
||||
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil
|
||||
from modules.upscaler import perform_upscale
|
||||
import cv2
|
||||
|
||||
|
||||
inpaint_head_model = None
|
||||
@ -28,19 +29,25 @@ def box_blur(x, k):
|
||||
return np.array(x)
|
||||
|
||||
|
||||
def max33(x):
|
||||
x = Image.fromarray(x)
|
||||
x = x.filter(ImageFilter.MaxFilter(3))
|
||||
return np.array(x)
|
||||
def max_filter_opencv(x, ksize=3):
|
||||
# Use OpenCV maximum filter
|
||||
# Make sure the input type is int16
|
||||
return cv2.dilate(x, np.ones((ksize, ksize), dtype=np.int16))
|
||||
|
||||
|
||||
def morphological_open(x):
|
||||
x_int32 = np.zeros_like(x).astype(np.int32)
|
||||
x_int32[x > 127] = 256
|
||||
for _ in range(32):
|
||||
maxed = max33(x_int32) - 8
|
||||
x_int32 = np.maximum(maxed, x_int32)
|
||||
return x_int32.clip(0, 255).astype(np.uint8)
|
||||
# Convert array to int16 type via threshold operation
|
||||
x_int16 = np.zeros_like(x, dtype=np.int16)
|
||||
x_int16[x > 127] = 256
|
||||
|
||||
for i in range(32):
|
||||
# Use int16 type to avoid overflow
|
||||
maxed = max_filter_opencv(x_int16, ksize=3) - 8
|
||||
x_int16 = np.maximum(maxed, x_int16)
|
||||
|
||||
# Clip negative values to 0 and convert back to uint8 type
|
||||
x_uint8 = np.clip(x_int16, 0, 255).astype(np.uint8)
|
||||
return x_uint8
|
||||
|
||||
|
||||
def up255(x, t=0):
|
||||
|
Loading…
Reference in New Issue
Block a user