improve anime
Improve Fooocus Anime a bit by using better SD1.5 refining formulation.
This commit is contained in:
		
							parent
							
								
									60c05342b2
								
							
						
					
					
						commit
						736a5aa3ac
					
				@ -69,7 +69,7 @@ vae_approx_filename = os.path.join(vae_approx_path, 'xl-to-v1_interposer-v3.1.sa
 | 
			
		||||
def parse(x):
 | 
			
		||||
    global vae_approx_model
 | 
			
		||||
 | 
			
		||||
    x_origin = x['samples'].clone()
 | 
			
		||||
    x_origin = x.clone()
 | 
			
		||||
 | 
			
		||||
    if vae_approx_model is None:
 | 
			
		||||
        model = Interposer()
 | 
			
		||||
@ -89,6 +89,5 @@ def parse(x):
 | 
			
		||||
    fcbh.model_management.load_model_gpu(vae_approx_model)
 | 
			
		||||
 | 
			
		||||
    x = x_origin.to(device=vae_approx_model.load_device, dtype=vae_approx_model.dtype)
 | 
			
		||||
    x = vae_approx_model.model(x)
 | 
			
		||||
 | 
			
		||||
    return {'samples': x.to(x_origin)}
 | 
			
		||||
    x = vae_approx_model.model(x).to(x_origin)
 | 
			
		||||
    return x
 | 
			
		||||
 | 
			
		||||
@ -1 +1 @@
 | 
			
		||||
version = '2.1.722'
 | 
			
		||||
version = '2.1.723'
 | 
			
		||||
 | 
			
		||||
@ -218,20 +218,22 @@ def get_previewer(model):
 | 
			
		||||
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
 | 
			
		||||
             scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
 | 
			
		||||
             force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1,
 | 
			
		||||
             previewer_start=None, previewer_end=None, sigmas=None, noise=None):
 | 
			
		||||
             previewer_start=None, previewer_end=None, sigmas=None, extra_noise=0.0):
 | 
			
		||||
 | 
			
		||||
    if sigmas is not None:
 | 
			
		||||
        sigmas = sigmas.clone().to(fcbh.model_management.get_torch_device())
 | 
			
		||||
 | 
			
		||||
    latent_image = latent["samples"]
 | 
			
		||||
 | 
			
		||||
    if noise is None:
 | 
			
		||||
    if disable_noise:
 | 
			
		||||
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
 | 
			
		||||
    else:
 | 
			
		||||
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
 | 
			
		||||
        noise = fcbh.sample.prepare_noise(latent_image, seed, batch_inds)
 | 
			
		||||
 | 
			
		||||
    if extra_noise > 0.0:
 | 
			
		||||
        noise = noise * (1.0 + extra_noise)
 | 
			
		||||
 | 
			
		||||
    noise_mask = None
 | 
			
		||||
    if "noise_mask" in latent:
 | 
			
		||||
        noise_mask = latent["noise_mask"]
 | 
			
		||||
 | 
			
		||||
@ -6,7 +6,7 @@ import modules.path
 | 
			
		||||
import fcbh.model_management
 | 
			
		||||
import fcbh.latent_formats
 | 
			
		||||
import modules.inpaint_worker
 | 
			
		||||
import modules.sample_hijack as sample_hijack
 | 
			
		||||
import fooocus_extras.vae_interpose as vae_interpose
 | 
			
		||||
 | 
			
		||||
from fcbh.model_base import SDXL, SDXLRefiner
 | 
			
		||||
from modules.expansion import FooocusExpansion
 | 
			
		||||
@ -270,22 +270,14 @@ refresh_everything(
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
@torch.inference_mode()
 | 
			
		||||
def vae_parse(x, tiled=False, use_interpose=True):
 | 
			
		||||
    if final_vae is None or final_refiner_vae is None:
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
    if use_interpose:
 | 
			
		||||
        print('VAE interposing ...')
 | 
			
		||||
        import fooocus_extras.vae_interpose
 | 
			
		||||
        x = fooocus_extras.vae_interpose.parse(x)
 | 
			
		||||
        print('VAE interposed ...')
 | 
			
		||||
def vae_parse(latent, k=1.0):
 | 
			
		||||
    if final_refiner_vae is None:
 | 
			
		||||
        result = latent["samples"]
 | 
			
		||||
    else:
 | 
			
		||||
        print('VAE parsing ...')
 | 
			
		||||
        x = core.decode_vae(vae=final_vae, latent_image=x, tiled=tiled)
 | 
			
		||||
        x = core.encode_vae(vae=final_refiner_vae, pixels=x, tiled=tiled)
 | 
			
		||||
        print('VAE parsed ...')
 | 
			
		||||
 | 
			
		||||
    return x
 | 
			
		||||
        result = vae_interpose.parse(latent["samples"])
 | 
			
		||||
    if k != 1.0:
 | 
			
		||||
        result = result * k
 | 
			
		||||
    return {'samples': result}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
@ -444,8 +436,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
 | 
			
		||||
        if modules.inpaint_worker.current_task is not None:
 | 
			
		||||
            modules.inpaint_worker.current_task.unswap()
 | 
			
		||||
 | 
			
		||||
        sample_hijack.history_record = []
 | 
			
		||||
        core.ksampler(
 | 
			
		||||
        sampled_latent = core.ksampler(
 | 
			
		||||
            model=final_unet,
 | 
			
		||||
            positive=positive_cond,
 | 
			
		||||
            negative=negative_cond,
 | 
			
		||||
@ -467,34 +458,20 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
 | 
			
		||||
            target_model = final_unet
 | 
			
		||||
            print('Use base model to refine itself - this may because of developer mode.')
 | 
			
		||||
 | 
			
		||||
        # Fooocus' vae parameters
 | 
			
		||||
        k_data = 1.05
 | 
			
		||||
        k_noise = 0.15
 | 
			
		||||
        k_sigmas = 1.4
 | 
			
		||||
 | 
			
		||||
        sampled_latent = vae_parse(sampled_latent, k=k_data)
 | 
			
		||||
 | 
			
		||||
        sigmas = calculate_sigmas(sampler=sampler_name,
 | 
			
		||||
                                  scheduler=scheduler_name,
 | 
			
		||||
                                  model=target_model.model,
 | 
			
		||||
                                  steps=steps,
 | 
			
		||||
                                  denoise=denoise)[switch:]
 | 
			
		||||
        k1 = target_model.model.latent_format.scale_factor
 | 
			
		||||
        k2 = final_unet.model.latent_format.scale_factor
 | 
			
		||||
        k_sigmas = float(k1) / float(k2)
 | 
			
		||||
        sigmas = sigmas * k_sigmas
 | 
			
		||||
                                  denoise=denoise)[switch:] * k_sigmas
 | 
			
		||||
        len_sigmas = len(sigmas) - 1
 | 
			
		||||
 | 
			
		||||
        last_step, last_clean_latent, last_noisy_latent = sample_hijack.history_record[-1]
 | 
			
		||||
        last_clean_latent = final_unet.model.process_latent_out(last_clean_latent.cpu().to(torch.float32))
 | 
			
		||||
        last_noisy_latent = final_unet.model.process_latent_out(last_noisy_latent.cpu().to(torch.float32))
 | 
			
		||||
        last_noise = last_noisy_latent - last_clean_latent
 | 
			
		||||
        last_noise = last_noise / last_noise.std()
 | 
			
		||||
 | 
			
		||||
        noise_mean = torch.mean(last_noise, dim=1, keepdim=True).repeat(1, 4, 1, 1) / k_sigmas
 | 
			
		||||
 | 
			
		||||
        refiner_noise = torch.normal(
 | 
			
		||||
            mean=noise_mean,
 | 
			
		||||
            std=torch.ones_like(noise_mean),
 | 
			
		||||
            generator=torch.manual_seed(image_seed+1)  # Avoid artifacts
 | 
			
		||||
        ).to(last_noise)
 | 
			
		||||
 | 
			
		||||
        sampled_latent = {'samples': last_clean_latent}
 | 
			
		||||
        sampled_latent = vae_parse(sampled_latent)
 | 
			
		||||
 | 
			
		||||
        if modules.inpaint_worker.current_task is not None:
 | 
			
		||||
            modules.inpaint_worker.current_task.swap()
 | 
			
		||||
 | 
			
		||||
@ -504,7 +481,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
 | 
			
		||||
            negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=final_clip),
 | 
			
		||||
            latent=sampled_latent,
 | 
			
		||||
            steps=len_sigmas, start_step=0, last_step=len_sigmas, disable_noise=False, force_full_denoise=True,
 | 
			
		||||
            seed=image_seed+2,  # Avoid artifacts
 | 
			
		||||
            seed=image_seed,
 | 
			
		||||
            denoise=denoise,
 | 
			
		||||
            callback_function=callback,
 | 
			
		||||
            cfg=cfg_scale,
 | 
			
		||||
@ -513,7 +490,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
 | 
			
		||||
            previewer_start=switch,
 | 
			
		||||
            previewer_end=steps,
 | 
			
		||||
            sigmas=sigmas,
 | 
			
		||||
            noise=refiner_noise
 | 
			
		||||
            extra_noise=k_noise
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        target_model = final_refiner_vae
 | 
			
		||||
@ -522,5 +499,4 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
 | 
			
		||||
        decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
 | 
			
		||||
 | 
			
		||||
    images = core.pytorch_to_numpy(decoded_latent)
 | 
			
		||||
    sample_hijack.history_record = None
 | 
			
		||||
    return images
 | 
			
		||||
 | 
			
		||||
@ -11,7 +11,6 @@ from fcbh.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_st
 | 
			
		||||
 | 
			
		||||
current_refiner = None
 | 
			
		||||
refiner_switch_step = -1
 | 
			
		||||
history_record = None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.no_grad()
 | 
			
		||||
@ -118,9 +117,6 @@ def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    def callback_wrap(step, x0, x, total_steps):
 | 
			
		||||
        global history_record
 | 
			
		||||
        if isinstance(history_record, list):
 | 
			
		||||
            history_record.append((step, x0, x))
 | 
			
		||||
        if step == refiner_switch_step and current_refiner is not None:
 | 
			
		||||
            refiner_switch()
 | 
			
		||||
        if callback is not None:
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,7 @@
 | 
			
		||||
# 2.1.723
 | 
			
		||||
 | 
			
		||||
* Improve Fooocus Anime a bit by using better SD1.5 refining formulation.
 | 
			
		||||
 | 
			
		||||
# 2.1.722
 | 
			
		||||
 | 
			
		||||
* Now it is possible to translate 100% all texts in the UI.
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user