This commit is contained in:
lvmin 2023-08-09 13:34:03 -07:00
parent 33133615fd
commit 5bf4a08b5e

View File

@ -1,4 +1,6 @@
import os
import math
import numpy as np
import torch
import safetensors.torch
@ -7,6 +9,68 @@ from sgm.util import instantiate_from_config
from sgm.modules.diffusionmodules.sampling import EulerAncestralSampler
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, device="cuda"):
# Hardcoded demo setups; might undergo some changes in the future
batch = {}
batch_uc = {}
for key in keys:
if key == "txt":
batch["txt"] = (
np.repeat([value_dict["prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
batch_uc["txt"] = (
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
elif key == "original_size_as_tuple":
batch["original_size_as_tuple"] = (
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
.to(device)
.repeat(*N, 1)
)
elif key == "crop_coords_top_left":
batch["crop_coords_top_left"] = (
torch.tensor(
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
)
.to(device)
.repeat(*N, 1)
)
elif key == "aesthetic_score":
batch["aesthetic_score"] = (
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
)
batch_uc["aesthetic_score"] = (
torch.tensor([value_dict["negative_aesthetic_score"]])
.to(device)
.repeat(*N, 1)
)
elif key == "target_size_as_tuple":
batch["target_size_as_tuple"] = (
torch.tensor([value_dict["target_height"], value_dict["target_width"]])
.to(device)
.repeat(*N, 1)
)
else:
batch[key] = value_dict[key]
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
sampler = EulerAncestralSampler(
num_steps=40,
discretization_config={
@ -31,4 +95,23 @@ model.eval()
sd = safetensors.torch.load_file('./sd_xl_base_1.0.safetensors')
model.load_state_dict(sd, strict=False)
model.conditioner.cuda()
value_dict = {
"prompt": "a handsome man in forest", "negative_prompt": "ugly, bad", "orig_height": 1024, "orig_width": 1024,
"crop_coords_top": 0, "crop_coords_left": 0, "target_height": 1024, "target_width": 1024, "aesthetic_score": 7.5,
"negative_aesthetic_score": 2.0,
}
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
1,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc)
model.conditioner.cpu()
a = 0