i
This commit is contained in:
		
							parent
							
								
									e1ca715b58
								
							
						
					
					
						commit
						3b2d07e9f5
					
				@ -11,7 +11,7 @@ import comfy.utils
 | 
			
		||||
from comfy.sd import load_checkpoint_guess_config
 | 
			
		||||
from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode
 | 
			
		||||
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models
 | 
			
		||||
from comfy.samplers import KSampler
 | 
			
		||||
from modules.samplers_advanced import KSamplerAdvanced
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
opCLIPTextEncode = CLIPTextEncode()
 | 
			
		||||
@ -123,7 +123,7 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sa
 | 
			
		||||
 | 
			
		||||
    models = load_additional_models(positive, negative, model.model_dtype())
 | 
			
		||||
 | 
			
		||||
    sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
 | 
			
		||||
    sampler = KSamplerAdvanced(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
 | 
			
		||||
                       denoise=denoise, model_options=model.model_options)
 | 
			
		||||
 | 
			
		||||
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										200
									
								
								modules/samplers_advanced.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										200
									
								
								modules/samplers_advanced.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,200 @@
 | 
			
		||||
from comfy.samplers import *
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class KSamplerAdvanced:
 | 
			
		||||
    SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
 | 
			
		||||
    SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
 | 
			
		||||
                "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
 | 
			
		||||
                "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
 | 
			
		||||
 | 
			
		||||
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
 | 
			
		||||
        self.model = model
 | 
			
		||||
        self.model_denoise = CFGNoisePredictor(self.model)
 | 
			
		||||
        if self.model.model_type == model_base.ModelType.V_PREDICTION:
 | 
			
		||||
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
 | 
			
		||||
        else:
 | 
			
		||||
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
 | 
			
		||||
 | 
			
		||||
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
 | 
			
		||||
        self.device = device
 | 
			
		||||
        if scheduler not in self.SCHEDULERS:
 | 
			
		||||
            scheduler = self.SCHEDULERS[0]
 | 
			
		||||
        if sampler not in self.SAMPLERS:
 | 
			
		||||
            sampler = self.SAMPLERS[0]
 | 
			
		||||
        self.scheduler = scheduler
 | 
			
		||||
        self.sampler = sampler
 | 
			
		||||
        self.sigma_min=float(self.model_wrap.sigma_min)
 | 
			
		||||
        self.sigma_max=float(self.model_wrap.sigma_max)
 | 
			
		||||
        self.set_steps(steps, denoise)
 | 
			
		||||
        self.denoise = denoise
 | 
			
		||||
        self.model_options = model_options
 | 
			
		||||
 | 
			
		||||
    def calculate_sigmas(self, steps):
 | 
			
		||||
        sigmas = None
 | 
			
		||||
 | 
			
		||||
        discard_penultimate_sigma = False
 | 
			
		||||
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
 | 
			
		||||
            steps += 1
 | 
			
		||||
            discard_penultimate_sigma = True
 | 
			
		||||
 | 
			
		||||
        if self.scheduler == "karras":
 | 
			
		||||
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
 | 
			
		||||
        elif self.scheduler == "exponential":
 | 
			
		||||
            sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
 | 
			
		||||
        elif self.scheduler == "normal":
 | 
			
		||||
            sigmas = self.model_wrap.get_sigmas(steps)
 | 
			
		||||
        elif self.scheduler == "simple":
 | 
			
		||||
            sigmas = simple_scheduler(self.model_wrap, steps)
 | 
			
		||||
        elif self.scheduler == "ddim_uniform":
 | 
			
		||||
            sigmas = ddim_scheduler(self.model_wrap, steps)
 | 
			
		||||
        else:
 | 
			
		||||
            print("error invalid scheduler", self.scheduler)
 | 
			
		||||
 | 
			
		||||
        if discard_penultimate_sigma:
 | 
			
		||||
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
 | 
			
		||||
        return sigmas
 | 
			
		||||
 | 
			
		||||
    def set_steps(self, steps, denoise=None):
 | 
			
		||||
        self.steps = steps
 | 
			
		||||
        if denoise is None or denoise > 0.9999:
 | 
			
		||||
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
 | 
			
		||||
        else:
 | 
			
		||||
            new_steps = int(steps/denoise)
 | 
			
		||||
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
 | 
			
		||||
            self.sigmas = sigmas[-(steps + 1):]
 | 
			
		||||
 | 
			
		||||
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
 | 
			
		||||
        if sigmas is None:
 | 
			
		||||
            sigmas = self.sigmas
 | 
			
		||||
        sigma_min = self.sigma_min
 | 
			
		||||
 | 
			
		||||
        if last_step is not None and last_step < (len(sigmas) - 1):
 | 
			
		||||
            sigma_min = sigmas[last_step]
 | 
			
		||||
            sigmas = sigmas[:last_step + 1]
 | 
			
		||||
            if force_full_denoise:
 | 
			
		||||
                sigmas[-1] = 0
 | 
			
		||||
 | 
			
		||||
        if start_step is not None:
 | 
			
		||||
            if start_step < (len(sigmas) - 1):
 | 
			
		||||
                sigmas = sigmas[start_step:]
 | 
			
		||||
            else:
 | 
			
		||||
                if latent_image is not None:
 | 
			
		||||
                    return latent_image
 | 
			
		||||
                else:
 | 
			
		||||
                    return torch.zeros_like(noise)
 | 
			
		||||
 | 
			
		||||
        positive = positive[:]
 | 
			
		||||
        negative = negative[:]
 | 
			
		||||
 | 
			
		||||
        resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
 | 
			
		||||
        resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
 | 
			
		||||
 | 
			
		||||
        calculate_start_end_timesteps(self.model_wrap, negative)
 | 
			
		||||
        calculate_start_end_timesteps(self.model_wrap, positive)
 | 
			
		||||
 | 
			
		||||
        #make sure each cond area has an opposite one with the same area
 | 
			
		||||
        for c in positive:
 | 
			
		||||
            create_cond_with_same_area_if_none(negative, c)
 | 
			
		||||
        for c in negative:
 | 
			
		||||
            create_cond_with_same_area_if_none(positive, c)
 | 
			
		||||
 | 
			
		||||
        pre_run_control(self.model_wrap, negative + positive)
 | 
			
		||||
 | 
			
		||||
        apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
 | 
			
		||||
        apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
 | 
			
		||||
 | 
			
		||||
        if self.model.is_adm():
 | 
			
		||||
            positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
 | 
			
		||||
            negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
 | 
			
		||||
 | 
			
		||||
        if latent_image is not None:
 | 
			
		||||
            latent_image = self.model.process_latent_in(latent_image)
 | 
			
		||||
 | 
			
		||||
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
 | 
			
		||||
 | 
			
		||||
        cond_concat = None
 | 
			
		||||
        if hasattr(self.model, 'concat_keys'): #inpaint
 | 
			
		||||
            cond_concat = []
 | 
			
		||||
            for ck in self.model.concat_keys:
 | 
			
		||||
                if denoise_mask is not None:
 | 
			
		||||
                    if ck == "mask":
 | 
			
		||||
                        cond_concat.append(denoise_mask[:,:1])
 | 
			
		||||
                    elif ck == "masked_image":
 | 
			
		||||
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
 | 
			
		||||
                else:
 | 
			
		||||
                    if ck == "mask":
 | 
			
		||||
                        cond_concat.append(torch.ones_like(noise)[:,:1])
 | 
			
		||||
                    elif ck == "masked_image":
 | 
			
		||||
                        cond_concat.append(blank_inpaint_image_like(noise))
 | 
			
		||||
            extra_args["cond_concat"] = cond_concat
 | 
			
		||||
 | 
			
		||||
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
 | 
			
		||||
            max_denoise = False
 | 
			
		||||
        else:
 | 
			
		||||
            max_denoise = True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        if self.sampler == "uni_pc":
 | 
			
		||||
            samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
 | 
			
		||||
        elif self.sampler == "uni_pc_bh2":
 | 
			
		||||
            samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
 | 
			
		||||
        elif self.sampler == "ddim":
 | 
			
		||||
            timesteps = []
 | 
			
		||||
            for s in range(sigmas.shape[0]):
 | 
			
		||||
                timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s]))
 | 
			
		||||
            noise_mask = None
 | 
			
		||||
            if denoise_mask is not None:
 | 
			
		||||
                noise_mask = 1.0 - denoise_mask
 | 
			
		||||
 | 
			
		||||
            ddim_callback = None
 | 
			
		||||
            if callback is not None:
 | 
			
		||||
                total_steps = len(timesteps) - 1
 | 
			
		||||
                ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
 | 
			
		||||
 | 
			
		||||
            sampler = DDIMSampler(self.model, device=self.device)
 | 
			
		||||
            sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
 | 
			
		||||
            z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
 | 
			
		||||
            samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
 | 
			
		||||
                                                    conditioning=positive,
 | 
			
		||||
                                                    batch_size=noise.shape[0],
 | 
			
		||||
                                                    shape=noise.shape[1:],
 | 
			
		||||
                                                    verbose=False,
 | 
			
		||||
                                                    unconditional_guidance_scale=cfg,
 | 
			
		||||
                                                    unconditional_conditioning=negative,
 | 
			
		||||
                                                    eta=0.0,
 | 
			
		||||
                                                    x_T=z_enc,
 | 
			
		||||
                                                    x0=latent_image,
 | 
			
		||||
                                                    img_callback=ddim_callback,
 | 
			
		||||
                                                    denoise_function=self.model_wrap.predict_eps_discrete_timestep,
 | 
			
		||||
                                                    extra_args=extra_args,
 | 
			
		||||
                                                    mask=noise_mask,
 | 
			
		||||
                                                    to_zero=sigmas[-1]==0,
 | 
			
		||||
                                                    end_step=sigmas.shape[0] - 1,
 | 
			
		||||
                                                    disable_pbar=disable_pbar)
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            extra_args["denoise_mask"] = denoise_mask
 | 
			
		||||
            self.model_k.latent_image = latent_image
 | 
			
		||||
            self.model_k.noise = noise
 | 
			
		||||
 | 
			
		||||
            if max_denoise:
 | 
			
		||||
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
 | 
			
		||||
            else:
 | 
			
		||||
                noise = noise * sigmas[0]
 | 
			
		||||
 | 
			
		||||
            k_callback = None
 | 
			
		||||
            total_steps = len(sigmas) - 1
 | 
			
		||||
            if callback is not None:
 | 
			
		||||
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
 | 
			
		||||
 | 
			
		||||
            if latent_image is not None:
 | 
			
		||||
                noise += latent_image
 | 
			
		||||
            if self.sampler == "dpm_fast":
 | 
			
		||||
                samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | 
			
		||||
            elif self.sampler == "dpm_adaptive":
 | 
			
		||||
                samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | 
			
		||||
            else:
 | 
			
		||||
                samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | 
			
		||||
 | 
			
		||||
        return self.model.process_latent_out(samples.to(torch.float32))
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user