improve gpt2

improve gpt2
This commit is contained in:
lllyasviel 2023-10-30 16:40:50 -07:00 committed by GitHub
parent d8616fe8dc
commit 34bcfa79c0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 36 additions and 23 deletions

8
expansion_experiments.py Normal file
View File

@ -0,0 +1,8 @@
from modules.expansion import FooocusExpansion
expansion = FooocusExpansion()
text = 'stone'
for i in range(64):
print(expansion(text, seed=i))

View File

@ -1 +1 @@
version = '2.1.764' version = '2.1.766'

View File

@ -284,7 +284,7 @@ def worker():
progressbar(3, 'Processing prompts ...') progressbar(3, 'Processing prompts ...')
tasks = [] tasks = []
for i in range(image_number): for i in range(image_number):
task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future task_rng = random.Random(task_seed) # may bind to inpaint noise in the future
task_prompt = apply_wildcards(prompt, task_rng) task_prompt = apply_wildcards(prompt, task_rng)
@ -330,9 +330,9 @@ def worker():
for i, t in enumerate(tasks): for i, t in enumerate(tasks):
progressbar(5, f'Preparing Fooocus text #{i + 1} ...') progressbar(5, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] New suffix: {expansion}') print(f'[Prompt Expansion] {expansion}')
t['expansion'] = expansion t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [join_prompts(t['task_prompt'], expansion)] # Deep copy. t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
for i, t in enumerate(tasks): for i, t in enumerate(tasks):
progressbar(7, f'Encoding positive #{i + 1} ...') progressbar(7, f'Encoding positive #{i + 1} ...')

View File

@ -9,27 +9,33 @@ from fcbh.model_patcher import ModelPatcher
# limitation of np.random.seed(), called from transformers.set_seed() # limitation of np.random.seed(), called from transformers.set_seed()
SEED_LIMIT_NUMPY = 2**32 SEED_LIMIT_NUMPY = 2**32
neg_inf = - 8192.0
fooocus_magic_split = [ preparation_templates = [
', extremely', '{prompt}, extremely detailed, ',
', intricate,', # '{prompt}, intricate, ',
] ]
dangrous_patterns = '[]【】()|:' dangrous_patterns = '[]【】()|:'
black_list = ['art', 'digital', 'paint', 'painting', 'painted', 'drawing', 'draw', 'drawn', black_list = ['art', 'digital', 'paint', 'painting', 'painted', 'drawing', 'draw', 'drawn',
'concept', 'illustration', 'illustrated', 'illustrate', 'concept', 'illustration', 'illustrated', 'illustrate',
'face', 'eye', 'eyes', 'hand', 'hands', 'head', 'heads', 'leg', 'legs', 'arm', 'arms', 'face', 'faces', 'eye', 'eyes', 'hand', 'hands', 'head', 'heads', 'leg', 'legs', 'arm', 'arms',
'shoulder', 'shoulders', 'body', 'facial', 'skin', 'character', 'human', 'portrait', 'cloth' 'shoulder', 'shoulders', 'body', 'facial', 'skin', 'character', 'human',
'monster', 'artistic', 'oil', 'brush', 'portrait', 'portraits', 'port', 'cloth',
'artwork', 'artworks', 'monster', 'artistic', 'oil', 'brush', 'ugly', 'ug',
'skeletal', 'skeleton', 'a', 'the', 'background'] 'artwork', 'artworks', 'pencil', 'line', 'sketch', 'cartoon', 'white', 'black', 'red',
'skeletal', 'skeleton', 'a', 'the', 'background', 'blur', 'blurred', 'depth', 'no', 'of',
'catdog', 'cat', 'fur',
'mugshot', 'selfie',
'!', '!!', '!!!', '!!!!', '!!!!!', '!!!!!!', '!!!!!!!', '-', '(', ')', ':', '', '"', '.']
black_list += ['Ġ' + k for k in black_list] black_list = black_list + [k.upper() for k in black_list] + [k.capitalize() for k in black_list]
black_list += [k.upper() for k in black_list] black_list.remove('Art')
black_list += [k.capitalize() for k in black_list] black_list.remove('ART')
black_list += ['Ġ' + k.upper() for k in black_list]
black_list += ['Ġ' + k.capitalize() for k in black_list] black_list = black_list + ['Ġ' + k for k in black_list]
def safe_str(x): def safe_str(x):
@ -50,11 +56,9 @@ class FooocusExpansion:
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path) self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
self.vocab = self.tokenizer.vocab self.vocab = self.tokenizer.vocab
self.logits_bias = torch.zeros((1, len(self.vocab)), dtype=torch.float32) self.logits_bias = torch.zeros((1, len(self.vocab)), dtype=torch.float32)
self.logits_bias[0, self.tokenizer.eos_token_id] = - 16.0
self.logits_bias[0, 198] = - 1024.0 # test_198 = self.tokenizer('\n', return_tensors="pt")
for k, v in self.vocab.items(): for k, v in self.vocab.items():
if k in black_list: if k in black_list:
self.logits_bias[0, v] = - 1024.0 self.logits_bias[0, v] = neg_inf
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path) self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
self.model.eval() self.model.eval()
@ -89,8 +93,8 @@ class FooocusExpansion:
seed = int(seed) % SEED_LIMIT_NUMPY seed = int(seed) % SEED_LIMIT_NUMPY
set_seed(seed) set_seed(seed)
origin = safe_str(prompt) prompt = safe_str(prompt)
prompt = origin + fooocus_magic_split[seed % len(fooocus_magic_split)] prompt = preparation_templates[seed % len(preparation_templates)].replace('{prompt}', prompt)
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt") tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device) tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
@ -111,7 +115,8 @@ class FooocusExpansion:
logits_processor=logits_processor) logits_processor=logits_processor)
response = self.tokenizer.batch_decode(features, skip_special_tokens=True) response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
result = response[0][len(origin):]
result = response[0]
result = safe_str(result) result = safe_str(result)
result = remove_pattern(result, dangrous_patterns) result = remove_pattern(result, dangrous_patterns)
return result return result