1.0.45 (#313)
* Reworked SAG, removed unnecessary patch * Reworked anisotropic filters for faster compute. * Replaced with guided anisotropic filter for less distribution.
This commit is contained in:
parent
7538b4d17b
commit
09e0d1cb3a
@ -1 +1 @@
|
||||
version = '1.0.43'
|
||||
version = '1.0.45'
|
||||
|
@ -126,6 +126,21 @@ def bilateral_blur(
|
||||
return _bilateral_blur(input, None, kernel_size, sigma_color, sigma_space, border_type, color_distance_type)
|
||||
|
||||
|
||||
def adaptive_anisotropic_filter(x, g=None):
|
||||
if g is None:
|
||||
g = x
|
||||
s, m = torch.std_mean(g, dim=(1, 2, 3), keepdim=True)
|
||||
s = s + 1e-5
|
||||
guidance = (g - m) / s
|
||||
y = _bilateral_blur(x, guidance,
|
||||
kernel_size=(13, 13),
|
||||
sigma_color=3.0,
|
||||
sigma_space=3.0,
|
||||
border_type='reflect',
|
||||
color_distance_type='l1')
|
||||
return y
|
||||
|
||||
|
||||
def joint_bilateral_blur(
|
||||
input: Tensor,
|
||||
guidance: Tensor,
|
||||
|
@ -4,6 +4,7 @@ import torch
|
||||
import modules.path
|
||||
|
||||
from comfy.model_base import SDXL, SDXLRefiner
|
||||
from modules.patch import cfg_patched
|
||||
|
||||
|
||||
xl_base: core.StableDiffusionModel = None
|
||||
@ -123,6 +124,15 @@ def process(positive_prompt, negative_prompt, steps, switch, width, height, imag
|
||||
global positive_conditions_cache, negative_conditions_cache, \
|
||||
positive_conditions_refiner_cache, negative_conditions_refiner_cache
|
||||
|
||||
if xl_base is not None:
|
||||
xl_base.unet.model_options['sampler_cfg_function'] = cfg_patched
|
||||
|
||||
if xl_base_patched is not None:
|
||||
xl_base_patched.unet.model_options['sampler_cfg_function'] = cfg_patched
|
||||
|
||||
if xl_refiner is not None:
|
||||
xl_refiner.unet.model_options['sampler_cfg_function'] = cfg_patched
|
||||
|
||||
positive_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=positive_prompt) if positive_conditions_cache is None else positive_conditions_cache
|
||||
negative_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=negative_prompt) if negative_conditions_cache is None else negative_conditions_cache
|
||||
|
||||
|
369
modules/patch.py
369
modules/patch.py
@ -2,359 +2,43 @@ import torch
|
||||
import comfy.model_base
|
||||
import comfy.ldm.modules.diffusionmodules.openaimodel
|
||||
import comfy.samplers
|
||||
import comfy.k_diffusion.external
|
||||
import modules.anisotropic as anisotropic
|
||||
|
||||
from comfy.samplers import model_management, lcm, math
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed
|
||||
from comfy.k_diffusion import utils
|
||||
|
||||
|
||||
sharpness = 2.0
|
||||
|
||||
|
||||
def sampling_function_patched(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={},
|
||||
seed=None):
|
||||
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
|
||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||
strength = 1.0
|
||||
if 'timestep_start' in cond[1]:
|
||||
timestep_start = cond[1]['timestep_start']
|
||||
if timestep_in[0] > timestep_start:
|
||||
return None
|
||||
if 'timestep_end' in cond[1]:
|
||||
timestep_end = cond[1]['timestep_end']
|
||||
if timestep_in[0] < timestep_end:
|
||||
return None
|
||||
if 'area' in cond[1]:
|
||||
area = cond[1]['area']
|
||||
if 'strength' in cond[1]:
|
||||
strength = cond[1]['strength']
|
||||
|
||||
adm_cond = None
|
||||
if 'adm_encoded' in cond[1]:
|
||||
adm_cond = cond[1]['adm_encoded']
|
||||
|
||||
input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
|
||||
if 'mask' in cond[1]:
|
||||
# Scale the mask to the size of the input
|
||||
# The mask should have been resized as we began the sampling process
|
||||
mask_strength = 1.0
|
||||
if "mask_strength" in cond[1]:
|
||||
mask_strength = cond[1]["mask_strength"]
|
||||
mask = cond[1]['mask']
|
||||
assert (mask.shape[1] == x_in.shape[2])
|
||||
assert (mask.shape[2] == x_in.shape[3])
|
||||
mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength
|
||||
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
|
||||
else:
|
||||
mask = torch.ones_like(input_x)
|
||||
mult = mask * strength
|
||||
|
||||
if 'mask' not in cond[1]:
|
||||
rr = 8
|
||||
if area[2] != 0:
|
||||
for t in range(rr):
|
||||
mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1))
|
||||
if (area[0] + area[2]) < x_in.shape[2]:
|
||||
for t in range(rr):
|
||||
mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1))
|
||||
if area[3] != 0:
|
||||
for t in range(rr):
|
||||
mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1))
|
||||
if (area[1] + area[3]) < x_in.shape[3]:
|
||||
for t in range(rr):
|
||||
mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1))
|
||||
|
||||
conditionning = {}
|
||||
conditionning['c_crossattn'] = cond[0]
|
||||
if cond_concat_in is not None and len(cond_concat_in) > 0:
|
||||
cropped = []
|
||||
for x in cond_concat_in:
|
||||
cr = x[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
|
||||
cropped.append(cr)
|
||||
conditionning['c_concat'] = torch.cat(cropped, dim=1)
|
||||
|
||||
if adm_cond is not None:
|
||||
conditionning['c_adm'] = adm_cond
|
||||
|
||||
control = None
|
||||
if 'control' in cond[1]:
|
||||
control = cond[1]['control']
|
||||
|
||||
patches = None
|
||||
if 'gligen' in cond[1]:
|
||||
gligen = cond[1]['gligen']
|
||||
patches = {}
|
||||
gligen_type = gligen[0]
|
||||
gligen_model = gligen[1]
|
||||
if gligen_type == "position":
|
||||
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
|
||||
else:
|
||||
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)
|
||||
|
||||
patches['middle_patch'] = [gligen_patch]
|
||||
|
||||
return (input_x, mult, conditionning, area, control, patches)
|
||||
|
||||
def cond_equal_size(c1, c2):
|
||||
if c1 is c2:
|
||||
return True
|
||||
if c1.keys() != c2.keys():
|
||||
return False
|
||||
if 'c_crossattn' in c1:
|
||||
s1 = c1['c_crossattn'].shape
|
||||
s2 = c2['c_crossattn'].shape
|
||||
if s1 != s2:
|
||||
if s1[0] != s2[0] or s1[2] != s2[2]: # these 2 cases should not happen
|
||||
return False
|
||||
|
||||
mult_min = lcm(s1[1], s2[1])
|
||||
diff = mult_min // min(s1[1], s2[1])
|
||||
if diff > 4: # arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
||||
return False
|
||||
if 'c_concat' in c1:
|
||||
if c1['c_concat'].shape != c2['c_concat'].shape:
|
||||
return False
|
||||
if 'c_adm' in c1:
|
||||
if c1['c_adm'].shape != c2['c_adm'].shape:
|
||||
return False
|
||||
return True
|
||||
|
||||
def can_concat_cond(c1, c2):
|
||||
if c1[0].shape != c2[0].shape:
|
||||
return False
|
||||
|
||||
# control
|
||||
if (c1[4] is None) != (c2[4] is None):
|
||||
return False
|
||||
if c1[4] is not None:
|
||||
if c1[4] is not c2[4]:
|
||||
return False
|
||||
|
||||
# patches
|
||||
if (c1[5] is None) != (c2[5] is None):
|
||||
return False
|
||||
if (c1[5] is not None):
|
||||
if c1[5] is not c2[5]:
|
||||
return False
|
||||
|
||||
return cond_equal_size(c1[2], c2[2])
|
||||
|
||||
def cond_cat(c_list):
|
||||
c_crossattn = []
|
||||
c_concat = []
|
||||
c_adm = []
|
||||
crossattn_max_len = 0
|
||||
for x in c_list:
|
||||
if 'c_crossattn' in x:
|
||||
c = x['c_crossattn']
|
||||
if crossattn_max_len == 0:
|
||||
crossattn_max_len = c.shape[1]
|
||||
else:
|
||||
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
||||
c_crossattn.append(c)
|
||||
if 'c_concat' in x:
|
||||
c_concat.append(x['c_concat'])
|
||||
if 'c_adm' in x:
|
||||
c_adm.append(x['c_adm'])
|
||||
out = {}
|
||||
c_crossattn_out = []
|
||||
for c in c_crossattn:
|
||||
if c.shape[1] < crossattn_max_len:
|
||||
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) # padding with repeat doesn't change result
|
||||
c_crossattn_out.append(c)
|
||||
|
||||
if len(c_crossattn_out) > 0:
|
||||
out['c_crossattn'] = [torch.cat(c_crossattn_out)]
|
||||
if len(c_concat) > 0:
|
||||
out['c_concat'] = [torch.cat(c_concat)]
|
||||
if len(c_adm) > 0:
|
||||
out['c_adm'] = torch.cat(c_adm)
|
||||
return out
|
||||
|
||||
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in,
|
||||
model_options):
|
||||
out_cond = torch.zeros_like(x_in)
|
||||
out_count = torch.ones_like(x_in) / 100000.0
|
||||
|
||||
out_uncond = torch.zeros_like(x_in)
|
||||
out_uncond_count = torch.ones_like(x_in) / 100000.0
|
||||
|
||||
COND = 0
|
||||
UNCOND = 1
|
||||
|
||||
to_run = []
|
||||
for x in cond:
|
||||
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
|
||||
to_run += [(p, COND)]
|
||||
if uncond is not None:
|
||||
for x in uncond:
|
||||
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
|
||||
to_run += [(p, UNCOND)]
|
||||
|
||||
while len(to_run) > 0:
|
||||
first = to_run[0]
|
||||
first_shape = first[0][0].shape
|
||||
to_batch_temp = []
|
||||
for x in range(len(to_run)):
|
||||
if can_concat_cond(to_run[x][0], first[0]):
|
||||
to_batch_temp += [x]
|
||||
|
||||
to_batch_temp.reverse()
|
||||
to_batch = to_batch_temp[:1]
|
||||
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp) // i]
|
||||
if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
|
||||
to_batch = batch_amount
|
||||
break
|
||||
|
||||
input_x = []
|
||||
mult = []
|
||||
c = []
|
||||
cond_or_uncond = []
|
||||
area = []
|
||||
control = None
|
||||
patches = None
|
||||
for x in to_batch:
|
||||
o = to_run.pop(x)
|
||||
p = o[0]
|
||||
input_x += [p[0]]
|
||||
mult += [p[1]]
|
||||
c += [p[2]]
|
||||
area += [p[3]]
|
||||
cond_or_uncond += [o[1]]
|
||||
control = p[4]
|
||||
patches = p[5]
|
||||
|
||||
batch_chunks = len(cond_or_uncond)
|
||||
input_x = torch.cat(input_x)
|
||||
c = cond_cat(c)
|
||||
timestep_ = torch.cat([timestep] * batch_chunks)
|
||||
|
||||
if control is not None:
|
||||
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
|
||||
|
||||
transformer_options = {}
|
||||
if 'transformer_options' in model_options:
|
||||
transformer_options = model_options['transformer_options'].copy()
|
||||
|
||||
if patches is not None:
|
||||
if "patches" in transformer_options:
|
||||
cur_patches = transformer_options["patches"].copy()
|
||||
for p in patches:
|
||||
if p in cur_patches:
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
|
||||
c['transformer_options'] = transformer_options
|
||||
|
||||
transformer_options['uc_mask'] = torch.Tensor(cond_or_uncond).to(input_x).float()[:, None, None, None]
|
||||
|
||||
if 'model_function_wrapper' in model_options:
|
||||
output = model_options['model_function_wrapper'](model_function,
|
||||
{"input": input_x, "timestep": timestep_, "c": c,
|
||||
"cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
|
||||
else:
|
||||
output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
|
||||
del input_x
|
||||
|
||||
model_management.throw_exception_if_processing_interrupted()
|
||||
|
||||
for o in range(batch_chunks):
|
||||
if cond_or_uncond[o] == COND:
|
||||
out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[
|
||||
o] * \
|
||||
mult[o]
|
||||
out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o]
|
||||
else:
|
||||
out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[
|
||||
o] * \
|
||||
mult[o]
|
||||
out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += \
|
||||
mult[o]
|
||||
del mult
|
||||
|
||||
out_cond /= out_count
|
||||
del out_count
|
||||
out_uncond /= out_uncond_count
|
||||
del out_uncond_count
|
||||
|
||||
return out_cond, out_uncond
|
||||
|
||||
max_total_area = model_management.maximum_batch_area()
|
||||
if math.isclose(cond_scale, 1.0):
|
||||
uncond = None
|
||||
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat,
|
||||
model_options)
|
||||
if "sampler_cfg_function" in model_options:
|
||||
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
|
||||
return model_options["sampler_cfg_function"](args)
|
||||
else:
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
cfg_x0 = 0.0
|
||||
cfg_s = 1.0
|
||||
|
||||
|
||||
def unet_forward_patched(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
uc_mask = transformer_options['uc_mask']
|
||||
transformer_options["original_shape"] = list(x.shape)
|
||||
transformer_options["current_index"] = 0
|
||||
def cfg_patched(args):
|
||||
global cfg_x0, cfg_s
|
||||
positive_eps = args['cond'].clone()
|
||||
positive_x0 = args['cond'] * cfg_s + cfg_x0
|
||||
uncond = args['uncond'] * cfg_s + cfg_x0
|
||||
cond_scale = args['cond_scale']
|
||||
t = args['timestep']
|
||||
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for id, module in enumerate(self.input_blocks):
|
||||
transformer_options["block"] = ("input", id)
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options)
|
||||
if control is not None and 'input' in control and len(control['input']) > 0:
|
||||
ctrl = control['input'].pop()
|
||||
if ctrl is not None:
|
||||
h += ctrl
|
||||
hs.append(h)
|
||||
transformer_options["block"] = ("middle", 0)
|
||||
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
|
||||
if control is not None and 'middle' in control and len(control['middle']) > 0:
|
||||
h += control['middle'].pop()
|
||||
|
||||
for id, module in enumerate(self.output_blocks):
|
||||
transformer_options["block"] = ("output", id)
|
||||
hsp = hs.pop()
|
||||
if control is not None and 'output' in control and len(control['output']) > 0:
|
||||
ctrl = control['output'].pop()
|
||||
if ctrl is not None:
|
||||
hsp += ctrl
|
||||
|
||||
h = torch.cat([h, hsp], dim=1)
|
||||
del hsp
|
||||
if len(hs) > 0:
|
||||
output_shape = hs[-1].shape
|
||||
else:
|
||||
output_shape = None
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
|
||||
h = h.type(x.dtype)
|
||||
x0 = self.out(h)
|
||||
|
||||
alpha = 1.0 - (timesteps / 999.0)[:, None, None, None].clone()
|
||||
alpha = 1.0 - (t / 999.0)[:, None, None, None].clone()
|
||||
alpha *= 0.001 * sharpness
|
||||
degraded_x0 = anisotropic.bilateral_blur(x0) * alpha + x0 * (1.0 - alpha)
|
||||
|
||||
x0 = x0 * uc_mask + degraded_x0 * (1.0 - uc_mask)
|
||||
eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
|
||||
eps_degraded_weighted = eps_degraded * alpha + positive_eps * (1.0 - alpha)
|
||||
|
||||
return x0
|
||||
cond = eps_degraded_weighted * cfg_s + cfg_x0
|
||||
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
def patched_discrete_eps_ddpm_denoiser_forward(self, input, sigma, **kwargs):
|
||||
global cfg_x0, cfg_s
|
||||
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
cfg_x0 = input
|
||||
cfg_s = c_out
|
||||
return self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
|
||||
|
||||
|
||||
def sdxl_encode_adm_patched(self, **kwargs):
|
||||
@ -385,6 +69,5 @@ def sdxl_encode_adm_patched(self, **kwargs):
|
||||
|
||||
|
||||
def patch_all():
|
||||
comfy.samplers.sampling_function = sampling_function_patched
|
||||
comfy.k_diffusion.external.DiscreteEpsDDPMDenoiser.forward = patched_discrete_eps_ddpm_denoiser_forward
|
||||
comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
|
||||
comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = unet_forward_patched
|
||||
|
@ -1,3 +1,11 @@
|
||||
### 1.0.45
|
||||
|
||||
* Reworked SAG, removed unnecessary patch
|
||||
* Reworked anisotropic filters for faster compute.
|
||||
* Replaced with guided anisotropic filter for less distortion.
|
||||
|
||||
### 1.0.41
|
||||
|
||||
(The update of Fooocus will be paused for a period of time for AUTOMATIC1111 sd-webui 1.6.X, and some features will also be implemented as webui extensions)
|
||||
|
||||
### 1.0.40
|
||||
|
2
webui.py
2
webui.py
@ -91,7 +91,7 @@ with shared.gradio_root:
|
||||
with gr.Row():
|
||||
model_refresh = gr.Button(label='Refresh', value='\U0001f504 Refresh All Files', variant='secondary', elem_classes='refresh_button')
|
||||
with gr.Accordion(label='Advanced', open=False):
|
||||
sharpness = gr.Slider(label='Sampling Sharpness', minimum=0.0, maximum=40.0, step=0.01, value=2.0)
|
||||
sharpness = gr.Slider(label='Sampling Sharpness', minimum=0.0, maximum=30.0, step=0.01, value=2.0)
|
||||
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/117">\U0001F4D4 Document</a>')
|
||||
|
||||
def model_refresh_clicked():
|
||||
|
Loading…
Reference in New Issue
Block a user