ComfyUI/comfy/nested_tensor.py
comfyanonymous 1bcda6df98
Some checks failed
Python Linting / Run Ruff (push) Has been cancelled
Python Linting / Run Pylint (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.9, [self-hosted Linux], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, --use-pytorch-cross-attention, macos, 3.10, [self-hosted macOS], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, --use-pytorch-cross-attention, macos, 3.11, [self-hosted macOS], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, --use-pytorch-cross-attention, macos, 3.12, [self-hosted macOS], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-stable (12.1, --use-pytorch-cross-attention, macos, 3.9, [self-hosted macOS], stable) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Has been cancelled
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, --use-pytorch-cross-attention, macos, 3.11, [self-hosted macOS], nightly) (push) Has been cancelled
Execution Tests / test (macos-latest) (push) Has been cancelled
Execution Tests / test (ubuntu-latest) (push) Has been cancelled
Execution Tests / test (windows-latest) (push) Has been cancelled
Test server launches without errors / test (push) Has been cancelled
Unit Tests / test (macos-latest) (push) Has been cancelled
Unit Tests / test (ubuntu-latest) (push) Has been cancelled
Unit Tests / test (windows-2022) (push) Has been cancelled
Close stale issues / stale (push) Has been cancelled
WIP way to support multi multi dimensional latents. (#10456)
2025-10-23 21:21:14 -04:00

92 lines
2.4 KiB
Python

import torch
class NestedTensor:
def __init__(self, tensors):
self.tensors = list(tensors)
self.is_nested = True
def _copy(self):
return NestedTensor(self.tensors)
def apply_operation(self, other, operation):
o = self._copy()
if isinstance(other, NestedTensor):
for i, t in enumerate(o.tensors):
o.tensors[i] = operation(t, other.tensors[i])
else:
for i, t in enumerate(o.tensors):
o.tensors[i] = operation(t, other)
return o
def __add__(self, b):
return self.apply_operation(b, lambda x, y: x + y)
def __sub__(self, b):
return self.apply_operation(b, lambda x, y: x - y)
def __mul__(self, b):
return self.apply_operation(b, lambda x, y: x * y)
# def __itruediv__(self, b):
# return self.apply_operation(b, lambda x, y: x / y)
def __truediv__(self, b):
return self.apply_operation(b, lambda x, y: x / y)
def __getitem__(self, *args, **kwargs):
return self.apply_operation(None, lambda x, y: x.__getitem__(*args, **kwargs))
def unbind(self):
return self.tensors
def to(self, *args, **kwargs):
o = self._copy()
for i, t in enumerate(o.tensors):
o.tensors[i] = t.to(*args, **kwargs)
return o
def new_ones(self, *args, **kwargs):
return self.tensors[0].new_ones(*args, **kwargs)
def float(self):
return self.to(dtype=torch.float)
def chunk(self, *args, **kwargs):
return self.apply_operation(None, lambda x, y: x.chunk(*args, **kwargs))
def size(self):
return self.tensors[0].size()
@property
def shape(self):
return self.tensors[0].shape
@property
def ndim(self):
dims = 0
for t in self.tensors:
dims = max(t.ndim, dims)
return dims
@property
def device(self):
return self.tensors[0].device
@property
def dtype(self):
return self.tensors[0].dtype
@property
def layout(self):
return self.tensors[0].layout
def cat_nested(tensors, *args, **kwargs):
cated_tensors = []
for i in range(len(tensors[0].tensors)):
tens = []
for j in range(len(tensors)):
tens.append(tensors[j].tensors[i])
cated_tensors.append(torch.cat(tens, *args, **kwargs))
return NestedTensor(cated_tensors)