From 469dd9c16ad88765ffe4e7bfa57dd80faafbaddf Mon Sep 17 00:00:00 2001 From: nomadoor <124905471+nomadoor@users.noreply.github.com> Date: Wed, 14 Jan 2026 09:48:10 +0900 Subject: [PATCH] Adds crop to multiple mode to ResizeImageMaskNode. (#11838) * Add crop-to-multiple resize mode * Make scale-to-multiple shape handling explicit --- comfy_extras/nodes_post_processing.py | 44 +++++++++++++++++++++++++++ 1 file changed, 44 insertions(+) diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 01afa13a1..0433bbda2 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -254,6 +254,7 @@ class ResizeType(str, Enum): SCALE_HEIGHT = "scale height" SCALE_TOTAL_PIXELS = "scale total pixels" MATCH_SIZE = "match size" + SCALE_TO_MULTIPLE = "scale to multiple" def is_image(input: torch.Tensor) -> bool: # images have 4 dimensions: [batch, height, width, channels] @@ -363,6 +364,43 @@ def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str input = finalize_image_mask_input(input, is_type_image) return input +def scale_to_multiple_cover(input: torch.Tensor, multiple: int, scale_method: str) -> torch.Tensor: + if multiple <= 1: + return input + is_type_image = is_image(input) + if is_type_image: + _, height, width, _ = input.shape + else: + _, height, width = input.shape + target_w = (width // multiple) * multiple + target_h = (height // multiple) * multiple + if target_w == 0 or target_h == 0: + return input + if target_w == width and target_h == height: + return input + s_w = target_w / width + s_h = target_h / height + if s_w >= s_h: + scaled_w = target_w + scaled_h = int(math.ceil(height * s_w)) + if scaled_h < target_h: + scaled_h = target_h + else: + scaled_h = target_h + scaled_w = int(math.ceil(width * s_h)) + if scaled_w < target_w: + scaled_w = target_w + input = init_image_mask_input(input, is_type_image) + input = comfy.utils.common_upscale(input, scaled_w, scaled_h, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + x0 = (scaled_w - target_w) // 2 + y0 = (scaled_h - target_h) // 2 + x1 = x0 + target_w + y1 = y0 + target_h + if is_type_image: + return input[:, y0:y1, x0:x1, :] + return input[:, y0:y1, x0:x1] + class ResizeImageMaskNode(io.ComfyNode): scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] @@ -378,6 +416,7 @@ class ResizeImageMaskNode(io.ComfyNode): longer_size: int shorter_size: int megapixels: float + multiple: int @classmethod def define_schema(cls): @@ -417,6 +456,9 @@ class ResizeImageMaskNode(io.ComfyNode): io.MultiType.Input("match", [io.Image, io.Mask]), crop_combo, ]), + io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [ + io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1), + ]), ]), io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), ], @@ -442,6 +484,8 @@ class ResizeImageMaskNode(io.ComfyNode): return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method)) elif selected_type == ResizeType.MATCH_SIZE: return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"])) + elif selected_type == ResizeType.SCALE_TO_MULTIPLE: + return io.NodeOutput(scale_to_multiple_cover(input, resize_type["multiple"], scale_method)) raise ValueError(f"Unsupported resize type: {selected_type}") def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None: